
LINFO 1121
DATA STRUCTURES AND ALGORITHMS

TP2: Tris et propriétés des
ensembles triés

LINFO1121Question 2.1.1: Insert element in a sorted array

1 3 6 10 15 21 27 34 42 51

Where to insert 30?

LINFO1121Question 2.1.1: Insert element in a sorted array

1 3 6 10 15 21 27 34 42 51 61

From left to right:

Insert here

LINFO1121Question 2.1.1: Insert element in a sorted array

1 3 6 10 15 21 27 34 42 51 61

21 < 30: on the right !

Binary Search :

LINFO1121Question 2.1.1: Insert element in a sorted array

1 3 6 10 15 21 27 34 42 51 61

21 < 30: on the right !

Binary Search :

LINFO1121Question 2.1.1: Insert element in a sorted array

1 3 6 10 15 21 27 34 42 51 61

42 > 30: on the left !

Binary Search :

LINFO1121Question 2.1.1: Insert element in a sorted array

1 3 6 10 15 21 27 34 42 51 61

42 > 30: on the left !

Binary Search :

LINFO1121Question 2.1.1: Insert element in a sorted array

1 3 6 10 15 21 27 34 42 51 61

27 < 30: on the right !

Binary Search :

LINFO1121Question 2.1.1: Insert element in a sorted array

1 3 6 10 15 21 27 34 42 51 61

27 < 30: on the right !

Binary Search :

LINFO1121Question 2.1.1: Insert element in a sorted array

1 3 6 10 15 21 27 34 42 51 61

34 > 30: on the left !

Binary Search :

LINFO1121Question 2.1.1: Insert element in a sorted array

1 3 6 10 15 21 27 30 34 42 51 61

Binary Search :

LINFO1121Question 2.1.1: Insert element in a sorted array

What's the time complexity ?

f(n) = 1 + f(
n
2

)
f(1) = 0

f(n) = log2 n

Binary Search :

LINFO1121Question 2.1.1: Insert element in a sorted array

Can we do something faster than that ?

Yes, if we have information on the data distribution in the array !

LINFO1121Question 2.1.2: Maximizing customer satisfaction

We consider the very general problem where we have n jobs to perform for clients
and each job j takes tj seconds to complete. Only one job can be performed at a
time.

The goal is to complete all jobs while maximizing customer satisfaction. Maximizing
customer satisfaction means building a schedule that minimizes the average job
completion time.

Example: if we have four jobs that take respectively 5, 8, 3, 1 seconds to finish then
the order 1,2,3,4 takes an average completion time of (5 + 13 + 16 + 17) /4

LINFO1121Question 2.1.2: Maximizing customer satisfaction

min
∑n

i=1 (∑i
j=1 tj)

n
Let's prove it by contradiction. Assume that we have a job A which is done just before B but takes more time

than B

T1 = (
A−1

∑
i=1

ti) + tA + (
A−1

∑
i=1

ti) + tA + tBSupposed optimal

T2 = (
B−1

∑
i=1

ti) + tB + (
B−1

∑
i=1

ti) + tB + tACompletion times if A and
B are inverted

LINFO1121Question 2.1.2: Maximizing customer satisfaction

By inversing A and B, we reduce the average time, we have a contradiction. Since this must hold

for every pair of job in the ordering, the jobs must be ordered by duration time.

T1 = (
A−1

∑
i=1

ti) + tA + (
A−1

∑
i=1

ti) + tA + tB T2 = (
B−1

∑
i=1

ti) + tB + (
B−1

∑
i=1

ti) + tB + tA

T1 − T2 = (
A−1

∑
i=1

ti) + tA + (
A−1

∑
i=1

ti) + tA + tB − ((
B−1

∑
i=1

ti) + tB + (
B−1

∑
i=1

ti) + tB + tA)

T1 − T2 = tA + tA + tB − (tB + tB + tA) = tA − tB > 0

LINFO1121Question 2.1.4 Cards sorter

How would you sort increasingly a pile of cards with the restriction that the only
permitted operations are:

1. compare the first two cards,

1. exchange the first two cards,

3. move the first card to the back of the pile?

LINFO1121Question 2.1.4 Cards sorter

How would you sort increasingly a pile of cards with the restriction that the only
permitted operations are:

1. compare the first two cards,

1. exchange the first two cards,

3. move the first card to the back of the pile?

Idea : Try to maintain the invariant that the last i elements of the pile are sorted and
those are the ith biggest ones.
After n iteration, the last n elements are sorted !

LINFO1121Question 2.1.4 Cards sorter

10 2 R 8 V 5

Top Back

LINFO1121Question 2.1.4 Cards sorter

First iteration, find the largest element and put it at the end !

10 2 R 8 V 5Swap the first two card to have
the largest in second position

2 10 R 8 V 5

10 R 8 V 5 2Put the front card to the back

R 2 10 8 V 5Repeat until one card
is left. It is the largest

2 10 8 V 5 RMove it to the back

This is the invariant

LINFO1121Question 2.1.4 Cards sorter

What about the next iterations ?

Same process. Find the largest in the n-i first element, put it at
the end !

2 10 8 V 5 R

R V 1 8 10 5

1 8 10 5 V R

LINFO1121Question 2.1.4 Cards sorter

for (int i = 0; i < n; i++) {
 // Invariant: the i last elements are sorted
 for (int k = 0; k < n; k++) {
 if (k <= n - 1 - i) {
 // put the smallest of the two top card on top
 }
 // move the top card at the end
 }
}

LINFO1121Question 2.1.5 Sorting a double linked list

How to sort a doubly linked list (which therefore does not allow access to a position
by its index) efficiently? How complex is your algorithm?

LINFO1121Question 2.1.5 Sorting a double linked list

How to sort a doubly linked list (which therefore does not allow access to a position
by its index) efficiently? How complex is your algorithm?

Can we take ideas from know sorting algorithms ?

LINFO1121Question 2.1.5 Sorting a double linked list

Merging two linked-list is similar to merging arrays in the MergeSort algorithm !
The "merge" operation can also be done in O(n+m) for linked list

LINFO1121Question 2.1.6 Number of unordered pairs

Design an efficient algorithm for counting the number of pairs of disordered values.
For example in the sequence 1,3,2,5,6,4,8 there are the pairs (3,2),(5,4),(6,4) which
are unordered. Justify the complexity of your algorithm and give its pseudo code.

LINFO1121Question 2.1.6 Number of unordered pairs

Design an efficient algorithm for counting the number of pairs of disordered values.
For example in the sequence 1,3,2,5,6,4,8 there are the pairs (3,2),(5,4),(6,4) which
are unordered. Justify the complexity of your algorithm and give its pseudo code.

Hint: Assume two arrays A and B, let A.B be the array result of the concatenation of
A and B. Let nUnsorted(A) be the number of unsorted pairs in an array A.
We have the following property that you can prove:

nUnsorted(A.B)=nUnsorted(A)+nUnsorted(B)+|{(i,j):A[i]>B[j]}|

LINFO1121Question 2.1.6 Number of unordered pairs
Computing the unsorted elements in A and B is linear if the two arrays are sorted

1 3 4 7 2 5 6 8

1 3 4 7 2 5 6 8count = 3

2 5 6 81 3 4 7count = 0

1 3 4 7 2 5 6 8

1 3 4 7 2 5 6 8

1 3 4 7 2 5 6 8count = 4

1 3 4 7 2 5 6 8count = 5

1 3 4 7 2 5 6 8count = 5

LINFO1121Question 2.1.6 Number of unordered pairs

Computing the unsorted elements in A and B is linear if the two arrays are sorted

LINFO1121Question 2.1.6 Number of unordered pairs

public static int numberUnsortedPairs(int [] array, int lo, int hi) {
 if (lo <= hi) return;
 int mid = (lo + hi)/2;
 int nA = numberUnsortedPairs(array, lo, mid);
 int nB = numberUnsortedPairs(array, mid+1, hi);
 int wab = wrongOrder(array, lo, mid, hi);
 merge(array, lo, mid, hi);
}

LINFO1121Question 2.1.7 COMPARABLE/COMPARATOR

Imagine that we want to sort a collection of Person objects lexicographically by their
(weight, age, height) but also Student objects by their (age, grade, year), how to
avoid duplicating the sorting algorithm specifically for these classes?

Explain why the notions of Comparable and Comparator of Java are useful for this?
Explain how you would implement an efficient Comparator for String.

LINFO1121Question 2.1.7 COMPARABLE/COMPARATOR

static class Person {
 int age;
 String name;
 int height;

 public Person(String name, int age, int height) {
 this.name = name;
 this.age = age;
 this.height = height;
 }

 public int getAge() {
 return this.age;
 }

 public int getHeight() {
 return this.height;
 }
}

static class Person implements Comparable<Person> {
 int age;
 String name;
 int height;

 public Person(String name, int age, int height) {
 this.name = name;
 this.age = age;
 this.height = height;
 }

 public int getAge() {
 return this.age;
 }

 public int getHeight() {
 return this.height;
 }

 @Override
 public int compareTo(Person o) {
 return this.age - o.age;
 }
}

• Using Comparable

Person[] people = new Person[] {
 new Person("Tom", 15, 177),
 new Person("Hannah", 16, 170),
 new Person("Ludovic", 2, 80)
};

Arrays.sort(people);

LINFO1121Question 2.1.7 COMPARABLE/COMPARATOR

Arrays.sort(people, new Comparator<Person>() {
 @Override
 public int compare(Person p1, Person p2) {
 return p1.getAge() - p2.getAge();
 }
});

Arrays.sort(people, Comparator.comparingInt(Person::getHeight));

Arrays.sort(people, (p1, p2) -> p1.name.compareTo(p2.name));

static class Person {
 int age;
 String name;
 int height;

 public Person(String name, int age, int height) {
 this.name = name;
 this.age = age;
 this.height = height;
 }

 public int getAge() {
 return this.age;
 }

 public int getHeight() {
 return this.height;
 }
}

• Using Comparator

static class PersonComparator implements Comparator<Person> {

 @Override
 public int compare(Person p1, Person p2) {
 return p1.age - p2.age;
 }
}

Arrays.sort(people, new PersonComparator());

LINFO1121Question 2.1.8 Stable sort from an unstable one ?

Is it possible to get a stable sort starting from an unstable sorting algorithm? How?

We can encapsulate the value to be sorted in an object that contains its position,
and perform a tie-break in the comparison function.

LINFO1121Question 2.1.9 Find the third largest value
How to find the third largest value in an array ?

LINFO1121Question 2.1.9 Find the third largest value
How to find the third largest value in an array ? We can use the same algorithm as to
find the minimum, it is even linear !

LINFO1121Question 2.1.9 Find the third largest value
How to find the third largest value in an array ? We can use the same algorithm as to
find the minimum, it is even linear !

public static int findThirdLargest(int [] array) {
 int max1, max2, max3 = Integer.MIN_VALUE;
 for (Integer i : array) {
 if (i > max1) {
 max3 = max2; max2 = max1; max1 = i;
 } else if (i > max2) {
 max3 = max2; max2 = i;
 } else if (i > max3) {
 max3 = i;
 }
 }
 return max3;
}

LINFO1121Question 2.1.9 Find the third largest value

What happen if now we want a generic method to find the n-th largest value ?

LINFO1121Question 2.1.9 Find the third largest value

What happen if now we want a generic method to find the n-th largest value ?

public static int findNLargest(int [] array, int n) {
 Arrays.sort(array);
 return array[n];
}

(Assuming there are no duplicate, but in case of duplicate a linear pass over the
array is doable and still O(n log(n)))

LINFO1121Question 2.1.10 Median

How would you get the median of an array of values (so the n/2 th value)? What is
the time complexity of your algorithm?

LINFO1121Question 2.1.10 Median

How would you get the median of an array of values (so the n/2 th value)? What is
the time complexity of your algorithm?

We can sort the array, and then take the element at the middle index. Complexity is
O(n log(n)), good enough. Can we do better ?

LINFO1121Question 2.1.10 Median

What does the partition function do?

LINFO1121Question 2.1.10 Median

What does the partition function do?
i j

10 1 12 8 4 7 130 6Initial values

10 1 12 8 4 7 132 5Scan left, scan right

10 1 7 8 4 12 132 5Exchange

4 4 10 1 7 8 4 12 13Scan left, scan right

4 1 7 8 10 12 13Final Exchange

LINFO1121Question 2.1.10 Median

public static int median(int[] array) {
 int lo = 0;
 int hi = array.length;
 int i = lo;
 while (i != array.length / 2) {
 int i = partition(array, lo, hi);
 if i < array.length / 2 {
 lo = i;
 } else if i > array.length / 2 {
 hi = i;
 }
 }
}

LINFO1121Question 2.1.11 AUTOBOXING, UNBOXING

What is Autoboxing and Unboxing in Java? How can this impact the performance of
a sorting algorithm?

Autoboxing in Java refers to the automatic conversion of primitive types (like int,
char, etc.) into their corresponding wrapper classes (like Integer, Character, etc.)
when an object is required, while unboxing is the reverse process where the
wrapper class is converted back into its primitive type

LINFO1121Question 2.1.15 Training Sessions

12 14 19 20 22 25 26 30

LINFO1121Question 2.1.15 Training Sessions

12 14 19 20 22 25 26 30

Room = 1Room = 2Room = 3

•Go from min start time to max time among sessions
•At each time step scan all sessions to check if overlap
•Max overlap is the number of room needed at the same time

LINFO1121Question 2.1.15 Training Sessions

public static int minFacilitiesRequiredBruteForce(int[][] sessions) {
 int minTime = Integer.MAX_VALUE;
 int maxTime = Integer.MIN_VALUE;

 for (int[] session : sessions) {
 minTime = Math.min(minTime, session[0]);
 maxTime = Math.max(maxTime, session[1]);
 }

 int maxOverlap = 0;

 for (int time = minTime; time <= maxTime; time++) {
 int overlap = 0;

 for (int[] session : sessions) {
 if (session[0] <= time && session[1] > time) {
 overlap++;
 }
 }
 maxOverlap = Math.max(maxOverlap, overlap);
 }

 return maxOverlap;
}

LINFO1121Question 2.1.15 Training Sessions

12 14 19 20 22 25 26 30

Current end time

•Sort all session by starting time
•Save end time of ongoing sessions
•Compare session time with the lowest saved end time
•If finished remove end time

Have a lower start time

Rooms = 0
Another end time

Have a lower start time Another end time

Use one free room

Rooms = 1Rooms = 2Rooms = 3Finished

Another end time
Finished

Use one free room Another end time

LINFO1121Question 2.1.15 Training Sessions

 public int minFacilitiesRequired(int[][] sessions) {

 if (sessions.length == 0) {
 return 0;
 }

 Arrays.sort(sessions, (a, b) -> a[0] == b[0] ? a[1] - b[1] : a[0] - b[0]);

 PriorityQueue<Integer> queue = new PriorityQueue<>();
 queue.add(sessions[0][1]);

 for (int i = 1; i < sessions.length; i++) {
 if (queue.peek() <= sessions[i][0]) {
 queue.poll();
 }
 queue.add(sessions[i][1]);
 }
 return queue.size();
}

