
LINFO1121: Algorithms and Data Structures — Summary

Pierre Schaus & Guillaume Derval

December 24, 2025

Disclaimer & Learning Resources

These slides are a summary only. They do not contain the full course material required for the exam. The
codes are Java-like pseudo-codes (most of them won’t compile).

Official Course Content:

• Theory: The official website (slides, chapters to read, theoretical exercises and links to inginious exercises)
https://pschaus.github.io/LINFO1121/

• Practice: All INGInious exercises:
https://inginious.info.ucl.ac.be/course/LINFO1121

• Reference: Related chapters of Algorithms, 4th Edition by Sedgewick & Wayne.

Course Material = Website + INGInious + Book Chapters

Contributions are welcome! Submit a Pull Request at:
https://github.com/pschaus/LINFO1121-summary

Special thanks to Gemini 3.0 Pro for assistance with formatting and the generation of Java-like pseudo-code.

2

https://pschaus.github.io/LINFO1121/
https://inginious.info.ucl.ac.be/course/LINFO1121
https://github.com/pschaus/LINFO1121-summary

The Iterable and Iterator Pattern

The Interfaces

• Iterable<T>: A collection that can be the
target of a "for-each" loop. Requires method
iterator().

• Iterator<T>: The object that tracks the
state of the traversal.

• Why Inner Classes? The iterator needs
access to the private array/data of the
container.

• Although delete method is part of the
Iterator interface, we generally do not
implement it (not trivial and optional).

public class MyList <T> implements Iterable <T> {
private T[] items;
private int size;

@Override
public Iterator <T> iterator () {

return new ListIterator ();
}

private class ListIterator implements Iterator <T> {
private int cursor = 0;

public boolean hasNext () {
return cursor < size;

}

public T next() {
if (! hasNext ()) throw new NoSuchElementException ();
return items[cursor ++];

}
}

}

3

Iteration Strategies: Fail-Fast vs. Fail-Safe

The Problem: Structural changes (add/remove)
during iteration can lead to undefined behavior.

1. Fail-Fast (frequent in Java collections)

• Throws ConcurrentModificationException
immediately if the collection changes.

• Pros: Detects bugs early; no memory overhead.

• Cons: Unsuitable for highly concurrent
environments.

2. Fail-Safe

• Works on a snapshot/copy of the data.

• Pros: No exception thrown; thread-safe.

• Cons: Overhead of copying; might not see
recent updates.

public class MyList <E> {
// Structural version of the list
protected int modCount = 0;

public Iterator <E> iterator () {
return new Itr(); // Snapshot taken here!

}

private class Itr implements Iterator <E> {
// Snapshot of modCount at creation
int expectedModCount = modCount;

public E next() {
checkForComodification ();
// ... return next element

}

final void checkForComodification () {
// Compare current state vs creation state
if (modCount != expectedModCount)

throw new ConcurrentModificationException ();
}

}
}

4

Available implementations of ADTs
in Java langage

Arrays (non-dynamic)

Usefulness Storage of a known number of elements
Constraint Fixed number of elements
Instantiation new Type[size] (e.g.: new int[8])

Methods
Name Java Complexity
Access element i array[i] Θ(1)
Assign x to element i array[i] = x Θ(1)

5

Arrays (dynamic)

Usefulness Storage of elements, random access
Instantiation new ArrayList<Type>()

Methods on an object o of size n

Name Java Complexity
Access element i o.get(i) Θ(1)
Assign x to element i o.set(i, x) Θ(1)
Add at the end o.add(x) Θ(1) amortized
Remove from the end o.remove(n-1) Θ(1) amortized
Add anywhere o.add(i, x) O(n)

Remove from anywhere o.remove(i) O(n)

Contains x? o.contains(x) O(n)

6

Doubly linked lists

Usefulness Storage of elements, sequential access
Instantiation new LinkedList<Type>()

Methods on an object o of size n

Name Java Complexity
Access first element o.getFirst() Θ(1)
Add to front o.addFirst(x) Θ(1)
Remove from front o.removeFirst() Θ(1)
Access last element o.getLast() Θ(1)
Add to back o.addLast(x) Θ(1)
Remove from back o.removeLast() Θ(1)
Access element i o.get(i) O(n)

Assign x to element i o.set(i, x) O(n)

Add anywhere o.add(i, x) O(n)

Remove from anywhere o.remove(i) O(n)

Contains x? o.contains(x) O(n)

7

Queue

Usefulness First-in, first-out (FIFO)
Instantiation Queue<Type> o = new LinkedList<>()

(Queue is an interface in Java!)

Methods on an object o of size n

Name Java Complexity
Access first element o.element() Θ(1)
Add (at the end) o.add(x) Θ(1)
Remove (from the front) o.remove() Θ(1)

When using the Queue ADT, you should NEVER have to use other methods (except size and empty).

Be careful, these functions can throw exceptions if the Queue is empty.

8

Stack

Usefulness Last-in, first-out (LIFO)
Instantiation Stack<Type> o = new Stack<>()

Methods on an object o of size n

Name Java Complexity
Access the element on top of the stack o.peek() Θ(1)
Add (on top) o.push(x) Θ(1)
Remove (from top) o.pop() Θ(1)

When using the Stack ADT, you should NEVER have to use other methods (except size and empty).

You can (but are not required to) also take a look at the Deque interface (double-ended queue, which
implements both the Stack and Queue ADTs) and its implementations: LinkedList and ArrayDeque.

NEVER iterate (foreach or iterator) over a stack. The elements are returned in reverse order...

9

Sorting in Java: Arrays and Collections

1. Primitive Arrays

• Use Arrays.sort(arr).

• Implementation of a variant of quicksort in
O(N logN).

2. Objects & Collections

• Use list.sort() or Collections.sort(list).
It requires objects to implement Comparable
(defines "natural order").

• You can also pass a custom comparator in
argument (more flexible).

• Implementation of variant of quicksort in
O(N logN) (stable).

3. Custom Order (Comparators) Using Lambda
expressions:

// Standard Lambda notation
list.sort((a, b) -> a.val - b.val);

// Using Comparator factory methods
list.sort(Comparator.comparing(Node:: getVal));

// Lexico -graphic: criterion one , then second in case of ties
list.sort(Comparator.comparing(Node:: getCategory)

.thenComparing(Node:: getVal));

10

TreeSet: Self-balancing tree (set)

Usefulness Set, sorted
Instantiation new TreeSet<Type>
What is it? Behind the scenes, it’s a red-black tree

No duplicates (it’s a set)
Elements must be comparable

Methods on an object o of size n

Name Java Complexity
Add o.add(x) O(log n)

Remove o.remove(x) O(log n)

Contains? o.contains(x) O(log n)

Find element below (or =) o.floor(x) O(log n)

Find element above (or =) o.ceil(x) O(log n)

Find element strictly below o.higher(x) O(log n)

Find element strictly above o.lower(x) O(log n)

Another useful method: subset, which allows extracting a part of the tree at constant cost.
descendingIterator is also very practical.

11

HashSet: hash table (set)

Usefulness Set
Instantiation new HashSet<Type>
What is it? A hash table

No duplicates (it’s a set)
Elements must be hashable (!!!)
Unsorted

Methods on an object o of size n

Name Java Complexity
Add o.add(x) O(1) amortized
Remove o.remove(x) O(1) amortized
Contains? o.contains(x) O(1) amortized

Under the constraint that the hashes are well distributed!

12

TreeMap: self-balancing tree (dictionary)

Usefulness Dictionary
Instantiation new TreeMap<TypeKey,TypeValue>
What is it? A red-black tree (or equivalent)

No duplicate keys (it’s a dictionary)
Keys must be comparable

Methods on an object o of size n

Name Java Complexity
Add (key x, value y) o.put(x, y) O(log n)

Get key o.get(x) O(log n)

Remove key o.remove(x) O(log n)

Contains key? o.containsKey(x) O(log n)

TreeSet functions are also available for keys (ceilingKey, subMap...).

See later slide for a tip on iterating over Maps and especially TreeMaps.

Even if there are methods to search for values (containsValue, ...), they are generally in O(n).

13

HashMap: hash table (dictionary)

Usefulness Set
Instantiation new HashMap<TypeKey,TypeValue>
What is it? A hash table

No duplicate keys (it’s a dictionary)
Keys must be hashable (!!!)
Unsorted

Methods on an object o of size n

Name Java Complexity
Add (key x, value y) o.put(x, y) O(1) amortized
Get key o.get(x) O(1) amortized
Remove key o.remove(x) O(1) amortized
Contains key? o.containsKey(x) O(1) amortized

Under the constraint that the hashes are well distributed!

See later slide for a tip on iterating over Maps and especially TreeMaps.

Even if there are methods to search for values (containsValue, ...), they are generally in O(n).

14

PriorityQueue: priority queue

Usefulness Queue, but with priorities.
Instantiation new PriorityQueue<Type>
What is it? A binary heap based on an array

Values must be comparable

Methods on an object o of size n

Name Java Complexity
Add o.add(x) Θ(log n)

See first element o.peek() Θ(1)
Remove first element o.poll() Θ(log n)

If you use any other method (remove, iterator, ...), a PQ is not the right structure. It’s usually O(n).

The iterator on PQs does not return the elements in order.

15

Which ADT/implementation to
choose for your problem?

Which ADT/implementation to choose?

Non-exhaustive and heuristic list obviously...

• I just want to store elements...
• And do sequential access → LinkedList
• And do random access...

• And add elements as I go → ArrayList
• And I know the size from the start → array type[]

• I want to maintain a set (without duplicates) → HashSet (hashable) or TreeSet (comparable)

• I want to use contains → HashSet (hashable) or TreeSet (comparable)

• I want to maintain a sorted set → TreeSet

• I want to map a key to a value...
• sorted → TreeMap
• unsorted → HashMap

• I want to add/remove/get, only at the beginning and at the end → LinkedList, Queue or Stack
depending on the case

• I have priorities to manage, always the highest priority item first → PriorityQueue

• I want to iterate over the content → anything except Stack, Queue, PQ, UF, ...

16

Sorting algorithms ADT relying on
comparisons

Binary Search

• In a sorted array, let’s say we are looking for an
element x .

• Take the middle of the array, y . If x = y , we
have won.

• If x < y , then x is necessarily on the left;
otherwise, it is on the right.

• Recursively call on the left or right half of the
array accordingly.

Complexity:
O(log n)

public static int rank(int[] a, int x) {
int lo = 0, hi = a.length - 1;
while (lo <= hi) {

int mid = lo + (hi - lo) / 2;
if (x < a[mid]) hi = mid - 1;
else if (x > a[mid]) lo = mid + 1;
else return mid;

}
return -1;

}

17

Sorting properties

• In-place sort: An algorithm that sorts items within the same storage space as the original data, using only
a small, constant amount of additional memory (usually O(1) or O(log n) auxiliary space). It modifies the
input array directly without creating a new array to store the sorted elements.

• Stable sort: A sorting algorithm that preserves the relative order of elements that have equal keys. If two
items have equal keys, a stable sort ensures their original relative order is maintained in the sorted output.
This is important when sorting data on multiple criteria.

Algorithm In-place? Stable?
Selection Sort Yes No
Insertion Sort Yes Yes
Merge Sort No Yes
Quick Sort Yes No
Heap Sort Yes No

18

Selection Sort

Algorithm Logic

• Search: Find the smallest element in the
unsorted portion.

• Swap: Swap it with the first unsorted
element.

• Invariant: Items to the left of i are sorted
and in their final positions.

• Performance: Always O(n2) comparisons,
but only O(n) swaps.

public static void selectionSort(int[] a) {
int n = a.length;
for (int i = 0; i < n - 1; i++) {

int min = i;
// Search for the smallest item
for (int j = i + 1; j < n; j++) {

if (a[j] < a[min]) {
min = j;

}
}
// Swap into correct position
int temp = a[i];
a[i] = a[min];
a[min] = temp;

}
}

19

Insertion Sort

Algorithm Logic

• Process: Pick the next element and "insert"
it into the sorted prefix by sliding it left.

• Adaptive: Very fast for nearly sorted data
(O(n) best case).

• Stable & In-place: Maintains relative order
and uses O(1) extra space.

• Complexity: O(n2) comparisons and swaps
in the worst case.

public static void insertionSort(int[] a) {
int n = a.length;
for (int i = 1; i < n; i++) {

// Slide a[i] into position in a[0..i]
for (int j = i; j > 0 && a[j] < a[j-1]; j--) {

swap(a, j, j - 1);
}

}
}

private static void swap(int[] a, int i, int j) {
int temp = a[i];
a[i] = a[j];
a[j] = temp;

}

20

Merge sort

• Divide the array into two halves.

• Recursively sort each half.

• Merge the two sorted halves.

• Time complexity O(n log n)

public static void mergeSort(int[] a, int[] aux , int lo , int hi) {
if (hi <= lo) return;
int mid = lo + (hi - lo) / 2;
sort(a, aux , lo, mid); // Sort left half
sort(a, aux , mid + 1, hi); // Sort right half
merge(a, aux , lo , mid , hi); // Merge results

}

private static void merge(int[] a, int[] aux , int lo, int mid , int hi) {
// 1. Copy to aux[]
for (int k = lo; k <= hi; k++) {

aux[k] = a[k];
}

// 2. Merge back to a[]
int i = lo, j = mid + 1;
for (int k = lo; k <= hi; k++) {

if (i > mid) a[k] = aux[j++];
else if (j > hi) a[k] = aux[i++];
else if (aux[j] < aux[i]) a[k] = aux[j++];
else a[k] = aux[i++];

}
}

21

Quick sort

• Partition the array so that for some ‘j‘

• the entry ‘a[j]‘ is in place (it won’t
move any more)

• no larger entry to the left of ‘j‘

• no smaller entry to the right of ‘j‘

• Sort each piece recursively.

• O(n2) in the worst-case (when the
array is sorted) (shuffle the array first to
have O(n log n) expected)

• We have seen a variant of the
quick-sort for computing the median.

public void quickSort(int[] a, int lo , int hi) {
if (hi <= lo) return;
int j = partition(a, lo , hi);
sort(a, lo , j - 1);
sort(a, j + 1, hi);

}

private int partition(int[] a, int lo, int hi) {
int i = lo, j = hi + 1;
int v = a[lo]; // Pivot element
while (true) {

while (a[++i] < v)
if (i == hi) break;

while (v < a[--j])
if (j == lo) break;

if (i >= j) break;
swap(a, i, j);

}
swap(a, lo , j); // Put pivot at j
return j;

}

22

Quick select

• Find the kth largest element in an unsorted array

• Choose a pivot

• Put the elements smaller than the pivot to the left of the pivot, the others to the right

• If the pivot ends up at position k, stop (it is the sought-after element).

• If not, if k < pivot position, recursively call only on the left, and on the right otherwise.

• Time complexity: O(n) average, O(n2) in general

23

Heap sort

• Transform the array into a heap.
• Heapify: O(n) (bottom-up)
• vs Insert one-by-one: O(n log n)

• Depop the elements one by one. They are
therefore sorted.

• Time complexity: O(n log n).

public static void heapSort(Comparable [] a) {
int N = a.length;
// Phase 1: Heapify = Build a valid heap
for (int k = N/2; k >= 1; k--) {

sink(a, k, N);
}
// Phase 2: Sortdown
while (N > 1) {

exch(a, 1, N--);
sink(a, 1, N);

}
}

private static void sink(Comparable [] a, int k, int N) {
while (2 * k <= N) {

int j = 2 * k; // Left child
if (j < N && less(a, j, j + 1)) j++;
if (!less(a, k, j)) break;
exch(a, k, j);
k = j;

}
}

24

Binary heaps (Priority Queues)

• Complete binary tree (except possibly the last
layer, filled from left).

• Property: Children of a node are larger or equal
than it (min-heap).

• Array Impl: Node i has children at 2i and
2i + 1. (1-based indexing).

• Insertions: Add to end. Swim up (exchange
with parent) until property holds.

• Min Deletion: Replace root with end element.
Sink down.

• Complexity: O(log n) min deletion and
insertions, O(1) to just retreive the min.

public void insert(Key x) {
pq[++N] = x;
swim(N);

}

private void swim(int k) {
while (k > 1 && greater(k/2, k)) {

exch(k, k/2);
k = k/2;

}
}

25

Min-max heap

• Variant of the binary heap, which maintains both the minimum and the maximum and allows them to be
removed in O(log n)

• Property: on the "even" layers (level 0 (root), 2, 4, ...) the min-heap property applies (all nodes below are
larger). For odd layers, it is the max-heap property.

• Necessarily, the minimum is the root, and the maximum is the maximum of the first two children.

• The rules for swim/sink of the values must be adapted (a sheet of paper and a small drawing should be
enough to find the rule, a little too long to put in this slide).

O(log n) for everything, O(1) to see the smallest/largest element.

26

Counting Sort & String Sorting

Counting Sort Logic

• Pre-condition: Values are integers in a fixed
range [0,R).

• Frequency: Count occurrences of each value.

• Accumulate: Transform counts into indices
(cumulative sum).

• Distribute: Move items to their correct position
in a temp array.

Complexity: O(N + R)

• N: Number of items.

• R: Size of alphabet/range.

Key Idea for Strings

• View characters as integers (a = 97, b = 98 . . .).

• LSD (Least Significant Digit): Sort strings from
right-to-left.

• Stability is Mandatory: Counting sort is stable, so a
sort on digit i doesn’t break the order from digit
i + 1.

LSD String Sort
for (int d = W-1; d >= 0; d--) {

int[] count = new int[R + 1];
// 1. Count frequencies of char at d
for (int i = 0; i < N; i++)

count[s[i]. charAt(d) + 1]++;
// 2. Compute cumulates
for (int r = 0; r < R; r++)

count[r+1] += count[r];
// 3. Move to aux array
for (int i = 0; i < N; i++)

aux[count[s[i]. charAt(d)]++] = s[i];
// 4. Copy back
for (int i = 0; i < N; i++) s[i] = aux[i];

}

27

Binary Search Trees (BST)

• Ordering property: For any node x , all keys in the left
subtree are < x and all keys in the right subtree are > x

(no duplicate keys).

• Recursive search: Compare the key with the current
node and recursively move left or right.

• Best case: The tree is balanced, with height O(log n),
yielding O(log n) search time.

• Worst case: Inserting sorted keys produces a degenerate
tree (linked list), giving O(n) search time.

Worst case (degenerate BST)

10

20

30

40

50

60

70

Best case (balanced BST)

40

20

10 30

60

50 70

28

2-3 tree

• Tree containing either 2-nodes (2 children) or 3-nodes (3 children).

• The 2-nodes work like search trees. The 3-nodes have two values. To the left smaller than the first, in the
middle between the first and the second value, to the right larger than the second value.

• 2-3 trees are always complete and therefore balanced.

• The addition rules are complex to list, BUT intuitive. We go down to where the value should be placed, we
add it to the node. If the node becomes a 4-node (three values) we must divide it by moving a value up to
the parent node.

Everything is in O(log n) as a result.

29

Left-Leaning Red-Black-Trees (LL-RBT) and 2-3 Tree Equivalence

• Search Structure: A LL-RBT is a BST where red links
are only on the left.

• One-to-One Correspondence:
• 2-nodes → standard black node.
• 3-nodes → two nodes connected by a red link.

• Black Balance: Every path from root to null link has
the same number of black links (perfect black balance).

• Height: Guaranteed O(logN) height; no more than
2 × height of 2-3 tree.

• . Note: Some textbooks allow right-leaning red links
(standard RBT), which are more complex
(implementation) to balance.

30

Hash and Maps

Hash tables - Separate Chaining

• Principle: Map keys to indices via
hashing. Store pairs in "buckets."

• Separate Chaining: Buckets are linked
lists handling collisions.

• Dynamic Resizing:
• When n/m gets too high, we increase m.
• Rehashing: Every item must be

re-processed because indices change
(hash (mod m)).

Operations are O(1) amortized.

public void put(Key key , Value val) {
if (n >= m) resize (2 * m);

int i = hash(key);
for (Node x = st[i]; x != null; x = x.next) {

if (key.equals(x.key)) {
x.val = val;
return;

}
}
// Prepend to chain
st[i] = new Node(key , val , st[i]);
n++;

}
private void resize(int newM) {

Node[] temp = new Node[newM];
for (int i = 0; i < m; i++) {

for (Node x = st[i]; x != null; x = x.next) {
// Recompute index for new M
int idx = (x.key.hashCode () & 0x7fffffff) % newM;
// Prepend to new chain
temp[idx] = new Node(x.key , x.val , temp[idx]);

}
}
this.st = temp;
this.m = newM;

}

31

Hash tables - Linear Probing

• Collision Resolution: If ‘table[i]‘ is occupied,
try ‘i+1‘, ‘i+2‘, etc. (wrapping around).

• Insertion: Find the first empty slot in the
sequence.

• Search: Follow the probe sequence until the
key is found or an empty slot is reached.

• The Deletion Problem:
• You cannot simply set a slot to ‘null‘.
• This would break the probe chain for items

inserted *after* it in the same cluster.
• Fix: Use "tombstones" or re-insert

subsequent items in the cluster.

public class LinearProbingHashST <Key , Value > {
private int n; // number of key -value pairs
private int m = 16; // size of linear probing table
private Key[] keys; // the keys
private Value[] vals; // the values

public void put(Key key , Value val) {
if (n >= m/2) resize (2*m);

int i;
for (i = hash(key); keys[i] != null; i = (i + 1) % m) {

if (keys[i]. equals(key)) {
vals[i] = val; // Update existing key
return;

}
}
keys[i] = key;
vals[i] = val;
n++;

}

public Value get(Key key) {
for (int i = hash(key); keys[i] != null; i = (i+1)%m) {

if (keys[i]. equals(key)) return vals[i];
}
return null;

}
}

32

LRU Cache Implementation

An LRU (Least Recently Used) Cache is a
HashMap with a fixed capacity that tracks access
order using a doubly linked list. Every time an
entry is accessed (get/put), it is moved to the
front (Most Recently Used). If an insertion
exceeds capacity, the tail (Least Recently Used)
entry is evicted.
Goal: O(1) for both ‘get‘ and ‘put‘. We combine

two data structures:
• Doubly Linked List (DLL):

• Maintains usage order.
• Head: Most Recently Used (MRU).
• Tail: Least Recently Used (LRU) - candidate

for eviction.

• Hash Map:
• Maps ‘Key‘ → the specific ‘DLL Node‘.
• Allows jumping directly to a node in the

middle of the list without traversal.

public class LRUCache <K, V> {
private class Node { K key; V val; Node prev , next;}
private Map <K, Node > map = new HashMap <>();
private Node head , tail; // Sentinels
private int capacity;
public V get(K key) {

Node node = map.get(key);
if (node == null) return null;
remove(node); // Move to front (MRU)
addFirst(node); // Not shown , easy
return node.val;

}
public void put(K key , V val) {

Node node = map.get(key);
if (node != null) {

node.val = val;
remove(node); // Not shown , easy

} else {
node = new Node ();
node.key = key; node.val = val;
map.put(key , node);
if (map.size() > capacity) {

Node lru = tail.prev;
remove(lru);
map.remove(lru.key);

}
}
addFirst(node); // Still easy

}
}

33

String Algorithms

Rabin-Karp Algorithm

Goal: efficient search for fixed-length (M)
patterns in a text.

• Preprocessing: Hash all patterns and
store in a Map<Long, String>.

• Rolling Hash: Update the hash in O(1)
as the window slides.

• Verification: If hash matches, compare
actual characters to rule out collisions.

The Math (Polynomial Hash):

Hi =

M−1∑
j=0

xi+jR
M−1−j

Rolling: To move window i → i + 1:

1. Remove leading char xi (xiRM−1).

2. Shift left (multiply by R).

3. Add new trailing char xi+M .

Hi+1 = (Hi − xiR
M−1) · R + xi+M

public int rabinKarpSearch(String txt , Set <String > patterns , int M) {
int N = txt.length ();
long Q = 997; // Large prime for modulo
int R = 256; // Alphabet size
long RM = 1; // R^(M-1) % Q
Map <Long , String > hashes = new HashMap <>();

for (int i = 1; i <= M - 1; i++) RM = (R * RM) % Q;

// 1. Preprocess patterns
for (String p : patterns) hashes.put(hash(p, M, Q), p);

// 2. Initial hash for first window
long h = hash(txt.substring (0, M), M, Q);

// 3. Roll through text
for (int i = 0; i <= N - M; i++) {

if (hashes.containsKey(h)) {
if (txt.substring(i, i + M). equals(hashes.get(h)))

return i; // Match found
}
// Roll to next window
if (i < N - M) {

h = (h + Q - txt.charAt(i) * RM % Q) % Q;
h = (h * R + txt.charAt(i + M)) % Q;

}
}
return -1;

}

34

Huffman compression

• Start with a set of trees, each
corresponding to a character’s
frequency.

• Use a Min-Priority Queue to store these
trees.

• Repeat until only one tree remains:

• Extract the two smallest frequency trees
(x and y).

• Merge them into a new tree with
frequency x .freq + y .freq.

• Insert the new tree back into the PQ.

O(n log n) where n is the number of
characters.

public Node buildTree(int[] freq) {
PriorityQueue <Node > pq = new PriorityQueue <>();
for (char c = 0; c < 256; c++) { // Creat a leaf nodes for each character

if (freq[c] > 0)
pq.add(new Node(c, freq[c], null , null));

}
while (pq.size() > 1) { // Merge smallest nodes until unique tree

Node left = pq.poll ();
Node right = pq.poll ();
// Create internal node (char ’\0’ or similar)
Node parent = new Node(’\0’, left.freq + right.freq ,

left , right);
pq.add(parent);

}
return pq.poll ();

}
private static class Node implements Comparable <Node > {

private final char ch;
private final int freq;
private final Node left , right;
Node(char ch, int freq , Node left , Node right) {

this.ch = ch; this.freq = freq;
this.left = left; this.right = right;

}
public int compareTo(Node that) {

return this.freq - that.freq;
}

}

35

Graph Algorithms

A quick reminder about graphs

• Graph: set of nodes and edges connecting these nodes. (G =< V ,E >)

• Weighted graph: the edges have an associated weight. Mathematically, usually, we define this via a
function f : E → R which gives a weight when given an edge.

• Simple graph: there is, between any pair of nodes, at most one edge. This implies that
E ≤ V ·(V−1)

2 ∈ O(V 2) and therefore that O(log E) ⊆ O(logV 2) = O(2 logV) = O(logV).

• Directed graph: the edges have a direction. Generally, we then call these edges arcs.

• Degree of a node: number of edges touching a node.

• In-degree (resp. out-degree): number of arcs of which the node is the destination (resp. origin).

• Sum of the degrees of the nodes = 2E

• Acyclic graph: without a cycle (directed or not, depending on the case).

36

Graph ADT: Adjacency Matrix vs. List

1. Adjacency Matrix

• A 2D array adj[V][V] where adj[u][v] == 1 if
edge (u, v) exists.

boolean [][] adj = new boolean[V][V];
void addEdge(u, v) { adj[u][v] = true; }

2. Adjacency List

• An array of V lists; adj[u] contains all neighbors
of u.

List <Integer >[] adj = new List[V];
void addEdge(u, v) { adj[u].add(v); }

Pros, Cons & Complexity
Operation Matrix List

Space O(V2) O(V + E)

Add Edge O(1) O(1)

Check Edge O(1) O(degree(u))

Iterate neighbors O(V) O(degree(u))

When to use?

• Matrix: Dense graphs (E ≈ V 2) or when you
need constant-time edge lookups.

• List: Sparse graphs (most real-world cases).
Memory efficient and faster for traversing
neighbors.

37

Breadth-First Search (BFS)

Concepts

• Layer-by-layer: Visits all nodes at distance d

before moving to d + 1.
• What it computes:

• In unweighted graphs, BFS finds the minimum
number of hops from source s to any reachable
v .

• dist[v]: Shortest path length of s → v .
• prev[v]: The node that "discovered" v .

• Path Reconstruction: Following prev[]
pointers backwards from v yields the shortest
path to s.

Complexity: O(V + E)

Queue q = new Queue ();
boolean [] visited = new boolean[G.V()];
int[] dist = new int[G.V()];
int[] prev = new int[G.V()]; // Path tree

visited[s] = true;
q.enqueue(s); // if you have multiple sources , add them here

while (!q.isEmpty ()) {
int u = q.dequeue ();
for (int v : G.adj(u)) {

if (! visited[v]) {
visited[v] = true;
dist[v] = dist[u] + 1;
prev[v] = u; // Discovery link
q.enqueue(v);

}
}

}

38

Depth-First Search (DFS)

• Intuition Explores as far as possible along each
branch before backtracking.

• What it computes:
• Finds a path from s to v , but it is not

necessarily the shortest.
• visited[v]: Keeps track of nodes already

explored.
• prev[v]: Encodes the path tree (the "parent"

node in the recursion).

• Possible implems: Uses the call stack
(Recursion) or an explicit Stack (LIFO).

• Path Reconstruction: Following prev[]
pointers backwards from v yields a path to s

(not necessarily the shortest).

• Complexity: O(V + E).

• Can be used for directed or undirected graph.

DFS(Graph G Source s)
boolean [] visited = new boolean[G.V()];
int[] prev = new int[G.V()];
search(G, s) // Initial call

void search(Graph G, int u) {
visited[u] = true;
for (int v : G.adj(u)) {

if (! visited[v]) {
prev[v] = u; // Record discovery
search(G, v); // Recursive dive

}
}

}

39

DFS Applications in O(V + E)

1. (Directed) cycle detection in a (directed) graph
A cycle exists if we visit an Open node:

• 0 (Unseen): Default.

• 1 (Open): Node is on the current recursion stack.

• 2 (Closed): Node & all descendants visited.

int[] state; // 0: UNSEEN , 1: OPEN , 2: CLOSED
public boolean hasCycle () {

state = new int[V];
for (int i = 0; i < V; i++) {

if (state[i] == 0) {
if (hasCycle(i)) return true;

}
}
return false;

}
bool hasCycle(int u) {

state[u] = 1; // Mark OPEN (on stack)
for (int v : adj[u]) {

if (state[v] == 0 && hasCycle(v)) return true;
if (state[v] == 1) return true; // Cycle!

}
state[u] = 2; // Mark CLOSED (backtrack)
return false;

}

2. Test if an undirected graph is bipartite

• Logic: Assign alternate colors (0 and 1).

• Conflict: A neighbor already has the same color as
current node → not bipartite.

int[] color; // -1: NONE , 0: RED , 1: BLUE
public boolean isBipartite () {

color = new int[V];
Arrays.fill(color , -1);
for (int i = 0; i < V; i++) {

if (color[i] == -1) {
if (! isBipartite(i, 0)) return false;

}
}
return true; // All components successfully 2-colored

}
bool isBipartite(int u, int c) {

color[u] = c; // Color this node
for (int v : adj[u]) {

if (color[v] == -1) { // Not visited
if (! isBipartite(v, 1-c)) return false;

} else if (color[v] == c) {
return false; // Conflict found!

}
}
return true;

}

40

Topological Sort

Objective

• For a DAG, find an ordering where for every
edge (u, v), u comes before v .

• Intuition: "Unlock" nodes only after all their
prerequisites are met.

In-degree Check

• If at the end the order contains fewer than V

nodes, the graph has a cycle.

Complexity: O(V + E)

// 1. Calculate in-degree for all nodes
int[] inDegree = new int[V];
for (int u = 0; u < V; u++)

for (int v : adj[u]) inDegree[v]++;

// 2. Queue all nodes with no dependencies
Queue q = new Queue ();
for (int i = 0; i < V; i++)

if (inDegree[i] == 0) q.enqueue(i);

// 3. Process the queue
List order = new ArrayList ();
while (!q.isEmpty ()) {

int u = q.dequeue ();
order.add(u);
for (int v : adj[u]) {

inDegree[v]--; // "Remove" edge (u, v)
if (inDegree[v] == 0) q.enqueue(v);

}
}

41

Union-Find (Weighted Quick-Union)

Useful data-strcuture to compute connected
components in undiracted graph in O(E).
Idea: Maintain disjoint sets as trees using an array
‘parent‘.

• Representative: The root of the tree (‘parent[i]
== i‘).

• Weighted Union: Always link the smaller tree
to the larger tree (maintains balance).

• Path Compression: During ‘find‘, make nodes
point directly to the root.

Complexity:
O(log n) with weighted union per op.
O(α(n)) per op. with weighted union + path
compression (O(1) practice).

public class UF {
private int[] parent; // parent[i] = parent of i
private int[] size; // size[i] = #nodes in subtree
private int count; // number of components
public UF(int n) {

count = n;
parent = new int[n];
size = new int[n];
for (int i = 0; i < n; i++) {

parent[i] = i;
size[i] = 1;

}
}
public int find(int i) {

if (parent[i] == i) return i;
return parent[i] = find(parent[i]); // Compression

}
public void union(int p, int q) {

int rootP = find(p);
int rootQ = find(q);
if (rootP == rootQ) return;
if (size[rootP] < size[rootQ]) { // Weithed

parent[rootP] = rootQ;
size[rootQ] += size[rootP];

} else {
parent[rootQ] = rootP;
size[rootP] += size[rootQ];

}
count --;

}
} 42

Minimum Spanning Tree: Prim & Kruskal Algorithms

Definitions

• Spanning Tree: Connected acyclic graph (n nodes ⇒ n − 1 edges).

• Minimum Weight: No spanning tree exists with a smaller total edge sum.

Prim’s (Vertex-Centric) "Grow a single tree"

• Start from an arbitrary node.

• Always pick the cheapest edge connecting the tree
to a new node.

Prim(G)
PriorityQueue pq;
pq.addEdges(startNode);
while (!pq.isEmpty ()) {

Edge e = pq.poll ();
if (e.to is visited) continue;

add e to MST;
visit(e.to);
pq.addEdges(e.to neighbors);

}

Kruskal’s (Edge-Centric) "Merge separate forests"

• Sort all edges by weight.

• Pick the cheapest edge that doesn’t create a cycle
(using Union-Find).

Kruskal(G)
sort edges by weight;
UnionFind uf = new UF(V);
for (Edge e : edges) {

if (!uf.connected(e.u, e.v)) {
uf.union(e.u, e.v);
add e to MST;

}
if (MST.size == V-1) break;

}

Complexity for both: O(E logV) or O(E log E) 43

Shortest Path: Dijkstra’s Algorithm (Lazy Implementation: no priority update)

Concepts

• Greedy Choice: Always expand the node
with the smallest current distance.

• Relaxation: If dist[u] + w < dist[v], we
found a better path.

• Lazy Update: Instead of updating a value in
the PQ, we insert a new entry because the
PriorityQueue of Java does not support
priority update.

• Condition: We only process a node if the
distance popped matches the dist[] array.

• . Dijstra does not work if negative edge
weights.

Complexity: O(E logV)

Dijkstra(Graph G s)
dist[] = new int[V]; // Init with infinity
prev[] = new int[V];
PriorityQueue <Node > pq = new PriorityQueue <>();

dist[s] = 0;
pq.add(new Node(s, 0)); // if you have multiple sources , add them here

while (!pq.isEmpty ()) {
Node current = pq.poll ();
int u = current.id;
int d = current.distance;

// Skip if already found a shorter path to u
if (d > dist[u]) continue;

for (Edge e : G.adj(u)) {
int v = e.to;
if (dist[u] + e.weight < dist[v]) {

dist[v] = dist[u] + e.weight;
prev[v] = u;
pq.add(new Node(v, dist[v]));

}
}

}

44

Shortest-Path: Bellman-Ford Algorithm

• Computes shortest paths with at most 1 edge,
then 2, . . . , up to V − 1.

• Unlike Dijkstra, it handles negative edge weights
correctly.

• If a distance can still be reduced in the V -th
iteration, a negative cycle exists.

Complexity: O(V × E).

BellmanFord(List<Edge> edges int s)
double [] dist = new double[V];
Arrays.fill(dist , Double.POSITIVE_INFINITY);
dist[s] = 0.0;

// Relax all edges V-1 times
for (int i = 1; i < V; i++) {

for (Edge e : edges) {
if (dist[e.u] + e.weight < dist[e.v]) {

dist[e.v] = dist[e.u] + e.weight;
}

}
}

// Check for negative cycles
for (Edge e : edges) {

if (dist[e.u] + e.weight < dist[e.v]) {
throw new RuntimeException("Negative␣cycle!");

}
}

return dist;

45

All-Pairs Shortest Paths: Floyd-Warshall Algorithm

• Purpose: Computes shortest distances
between all pairs of nodes in a
weighted directed graph.

• Dynamic Programming: d [i][j] is the
shortest path from i to j using only
intermediate nodes from {0 . . . k}.

• Complexity: O(V 3) time and O(V 2)

space.

• Note: Can handle negative edge
weights, but not negative cycles.

public double [][] floydWarshall(double [][] adj , int V) {
double [][] dist = new double[V][V];

// 1. Initialize distance matrix
for (int i = 0; i < V; i++) {

for (int j = 0; j < V; j++) {
dist[i][j] = adj[i][j];

}
}

// 2. Main DP loop
for (int k = 0; k < V; k++) {

for (int i = 0; i < V; i++) {
for (int j = 0; j < V; j++) {

if (dist[i][k] + dist[k][j] < dist[i][j]) {
dist[i][j] = dist[i][k] + dist[k][j];

}
}

}
}
return dist;

}

46

Longest path

• It is conjectured that there is no polynomial time algorithm to find the longest path in an arbitrary graph
(NP-Complete problem).

• If the graph is a DAG (directed acyclic graph) then there is a polynomial algorithm: take the opposite of
the edge weights, and use Bellman-Ford.

• This works because there will be negative weights, but no negative cycles since the graph is acyclic.

47

Tips & tricks

Iterating over collections

Don’t do this (because it takes O(n2))...:

List <String > x = ...;
for(int i = 0; i < x.size (); i++) {

String elem = x.get(i);
//...

}

... use foreach instead:

for(String elem: x) {
//...

}

or an iterator:

Iterator <String > itr = x.iterator ();
while(itr.hasNext ()) {

String elem = itr.next ();
//...

}

48

Iterating over collections (2)

For dictionaries (HashMap, TreeMap), three reasonable possibilities:

HashMap <X, Y> hashmap = ...;
for(Map.Entry <X, Y> pair: hashmap.entrySet ()) {

X key = pair.getKey ();
Y value = pair.getValue ();
// ...

}

for(X key: hashmap.keySet ()) {
Y value = hashmap.get(key);
// ...

}

Or with an iterator (on hashmap.entrySet().iterator() or hashmap.keySet().iterator()).

If you use a TreeMap, it’s given in sorted order! Be careful that it’s always O(n) except in the second case with
the TreeMap, where it’s O(n log n).

49

	Available implementations of ADTs in Java langage
	Which ADT/implementation to choose for your problem?
	Sorting algorithms ADT relying on comparisons
	Hash and Maps
	String Algorithms
	Graph Algorithms
	Tips & tricks

