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ABSTRACT

Origin-Destination (OD) datasets describe the movement of entities
between different geographic locations over time, such as human
migration, movement of animals or diseases, traffic movement, etc.
Visualizing the spatio-temporal patterns underlying OD databases
is a challenging task since it involves the study of flows between
spatial locations (origins and destinations) in a temporal context.
Resulting from a collaborative effort of computer scientists and so-
cial scientists, our new visualization tool, EvoFlows, combines and
synchronizes two complementary views. The first one relies on a
system for visualizing time series data, MultiStream, and highlights
the temporal dimension of OD data. It depicts inflows and outflows
as aggregated stacked time series. Relying on flow maps, the second
one highlights the geographic dimension and magnitude of flows at
a given time-stamp. Our approach allows the temporal and spatial
exploration of the flows at different levels of detail through multiple
interaction techniques, visual components, and synchronized ani-
mations. The practical usability is illustrated by analyzing data on
refugee migration over a period of 59 years.

Index Terms: Visualization tool—Origin-Destination data—User
Interfaces—

1 INTRODUCTION

Researchers in social and medical sciences increasingly use mul-
tidimensional databases involving spatial, temporal and other as-
pects. To highlight a few examples, annual data on trade in goods
and services are available by product, by country of origin and by
country of destination over a long period. Annual data on foreign
direct investments are also available per year and per country pair.
Demographers, sociologists and economists developed databases
documenting international migration flows and stocks by country
pair, by education level, by gender, and by period. Epidemiolo-
gists use data on population movements to study the propagation of
diseases across regions and countries. Visualizing the spatial and
temporal patterns underlying these databases is a challenging task.

This paper focuses on three-dimensional data sets involving an
origin and a destination (i.e., a dyad of spatial entities), as well as
the time component. It proposes a new approach to visualize the
trends in dyadic flows between spatial entities (see Andrienko et
al. [4, 7]). Our tool is designed to rapidly and visually extract the
maximum amount of information from large databases to address
questions such as: What are the main dyads of countries involved?
What are the main sources of variation over time at the extensive
margin (i.e., emergence of new dyads) or at the intensive margin
(i.e., greatest growth rates)?

Flow maps [23, 26, 32, 37] are widely used to represent dyadic
flows. Maps are used to connect origin and destination locations
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whereas arrows are used to highlight the direction of the flows; the
thickness of the arrow represents the magnitude of the flow. In
general, this approach is appropriate for scrutinizing spatial patterns,
but disregards the time series dimension that is frequently available.
Previous approaches [11,41] use an abstract temporal representation
to deal with this limitation; however, they do not show the flow
evolution over long periods and raise scalability issues when the
number of dyads is large.

In order to fill this gap, we propose EvoFlows (Fig. 1), a user-
friendly interactive visualization tool that relies on a combination
of MultiStream [17] and Flow maps for exploring both the temporal
and spatial dimensions in origin-destination data. MultiStream is
an approach that was proposed in earlier work for the visualisation
of time series; in this work we will show that the characteristics of
this approach also make it useful in the context of visualizing origin-
destination data. To illustrate the performance of our approach,
we present a real-world application of EvoFlows relying on an-
nual flows of refugee migrants. EvoFlows is available at https://
erickedu85.github.io/app/evoflows/ and a demonstration
video is available at https://youtu.be/7z89f-5NMvM.

2 RELATED WORK

This section surveys existing visualization tools for depicting origin-
destination flow data. We focus on the spatio-temporal aspects.

2.1 Visualizing Origin-Destination Flows

There are three known approaches for representing origin-destination
flow data: Flow Maps [23, 26, 32, 37], OD-Matrices [30, 38], and
OD-Maps [39, 40].

Flow Maps is the widely-used technique to visualize OD data. It
connects flows by means of an arrow (straight or curved) commonly
on a 2D map, where the line width is proportional to the magnitude
of the flow and the arrow depicts its direction. Since Flow Maps
use a cartographic representation, they naturally reveal the spatial
characteristics of the flows. In a dynamic context, scalability issues
make comparisons difficult. When the number of dyads is large,
the crossing of lines causes visual clutter or occlusion. To partially
overcome this problem, several techniques have been proposed:
edge filtering [35, 37], edge bundling [10, 19, 28, 32, 33], spatial
aggregation (Fig. 2) [1, 23, 24], and 3D Flow Map [42].

Edge filtering is a method where only flows with magnitudes
greater than a threshold value are presented. For instance, Stephen
et al. [35] use filtering interactions to represent the most impor-
tant U.S. migration flows at the county-to-county level. Another
approach to reduce visual clutter is the edge bundling technique.
This method groups and merges spatially close line flows. For in-
stance, Phan et al. [32] implement a hierarchical clustering method
to bundling flows from a single-origin to their destinations in a tree
way; this strategy, however, delivers mixed results when the num-
ber of dyads is very large. In addition, a major drawback with the
edge bundling is that magnitudes and directions of the flows are
not exactly represented. Considering spatial aggregation techniques,
the regionalization procedure [22] is often used to build regions by
agglomerating contiguous spatial locations. For instance, Guo [23]
combines this method with a graph-clustering algorithm to group
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Figure 1: An overview of the EvoFlows user interface. (a) The temporal view shows two MultiStream [17] views depicting the evolution of
outflows/inflows over time. The flows are colored according to the continent where they belong (i.e., Africa in yellow, Asia in blue, Europe in red,
America in purple, and Oceania in orange). (b) The spatial view shows origin-destination locations at different levels of details where arrows depict
flow directions and the colors of the regions depict the flow magnitude. (c) The snapshot panel displays a list of snapshots that convey interest
moments for analysis. (d) A play button allows the user to activate animated transitions to explore temporal and spatial changes in the flows.

different locations into larger regions. However, due to the computa-
tional complexity of regionalization, this approach is not suitable for
interactive systems. Guo et al. [24] propose a further approach that
uses a kernel-based density method to extract massive flow patterns.
Andrienko et al. [1] propose a space-partitioning method based on
a Voronoi diagram to define suitable places; however, this method
only shows flows between adjacent places and, therefore, loses spa-
tial information of the individuals flows. Recently, Yang et al. [42]
study the use of a third dimension in an immersive environment
to increase readability of flows by mapping the magnitudes in this
additional dimension. However, the use of a 3D space to encode
abstract information should be used carefully [31].

On the other hand, OD-Matrices use a 2D matrix where the rows
and columns represent the origins and destinations of the flows, and
the cells contain the magnitude of the flows between locations pairs
encoded in a color scheme. Since OD-Matrices use a table to rep-
resent flows, they are more scalable than Flow Maps. Nevertheless,
identifying the geographical context is difficult [39], as is recogniz-
ing the magnitudes of the flows depicted in colors. One technique to
partially alleviate those problems is to re-order rows and columns
according to spatial locations [30] but again, visual clutters arise
when dealing with large datasets.

Another technique to enhance the spatial perception of OD-
Matrices is through OD-Maps. This method divides the geographic
space into a 2D matrix nested at two levels. The first level repre-
sents the origin locations while the second level is embedded in
each location as a small matrix that represents the information of the
destination flow by color coding. Due to the spatial division that this
technique performs, it is difficult to visually represent large datasets
of flow data [5].

Hence, the above techniques are mostly designed to characterize
the spatial dimension of the OD data flows at a specific moment, but
are difficult to combine with the inherent temporal context.

2.2 Visualizing Temporal Changes on Flows

New challenges arise when the temporal evolution of flows is taken
into account. Flow Maps and OD-Matrices represent flows of a
specific time or an aggregated time interval (i.e., individual time
steps are aggregated over longer periods). Usually, a discrete slider
allows users to navigate through these periods. Recent approaches,
such as MapTrix [41] and Flowstrates [11], add a separate view to
depict time series of flow magnitudes. These systems are based on
three visual components. A geographical map shows the origins,
another shows the destinations, and a heatmap-matrix represent
time series of magnitudes. Lines connect the two maps with the
corresponding row in the matrix. The main difference between
these two approaches is that in Flowstrates each row of the matrix
represents a flow, instead, MapTrix gives an aggregation of the
flow in each cell of the matrix. Therefore, MapTrix scales better to
represent the directions of the flows. Nevertheless, the high level of
abstraction provided by the heatmap makes it difficult to visualize
precisely the magnitude of the flow at each time step. The analysis
of flows over long periods also reduces the readability.

Aigner et al. [2] discuss several visualization techniques dealing
with time-oriented data. For instance, a widely used approach to
represent the evolution of flows over time consists in using stacked
graphs [14,26]. Flows representing the evolution of a quantitative
value (e.g., flow magnitude) are stacked over time. However, the
visual output quality deteriorates as the number of flows increases.

In this work, we build on an alternative stacking approach, called
MultiStream [17], which overcomes this problem by organizing
flows into a hierarchical structure that permits a dynamic aggrega-
tion of flows and interacting with them in a focus+context tech-
nique [16, 20] using a set of interactive views. Therefore, the
MultiStream system addresses scalability issues to represent the
temporal dimension in large sets of flows.

Our goal in this work is to extract spatio-temporal information of
the flows and make it as readable as possible, trying to overcome the
limitations of the previous approaches.
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Figure 2: Example of spatial aggregation/disaggregation of the African continent according to administrative units. (a) A high-level of abstraction in
a hierarchical structure. Low-level division of the hierarchy representing regions (b) and countries (c). The arrows show the generalization phases
of locations.

2.3 Visualizing Flows Generalization

It is necessary to use appropriate data abstraction methods due to
the scalability and readability challenges of visualizing spatial and
temporal changes in the flow databases. Data abstraction is the
process of reducing details of the data while retaining the essential
characteristics in a simplified representation of the whole [18]. Ag-
gregation methods are used to group flows and, therefore, reduce the
number of them to represent.

Table 1 presents a comparison of different approaches based on
Flow Maps considering the temporal and/or spatial aggregations
they supports. We can note that spatial generalization is supported
by the first three systems. Guo [23], Andrienko et al. [1], and Guo
et al. [24] use techniques such as regionalization to group regions
based on flow structures. These approaches provides dedicated
geographical maps to interact with the aggregated flows. Regarding
the temporal generalization, MapTrix [41] and Flowstrates [11] are
the only systems that supplies a strategy to aggregate the time series
of the flow magnitudes. Both use a heatmap-matrix representation
combined with interactions techniques to navigate through it.

To summarize, most of the systems focus on the spatial aspect
rather than the temporal evolution of the OD data. To the best of our
knowledge, there are no visual approaches dealing with the spatial-
temporal context simultaneously at different levels of aggregation.

Table 1: Comparison of various approaches based on Flow Maps
and the ability to aggregate temporal or/and spatial dimensions of
origin-destination data flows.

Approach Temporal
Aggregation

Spatial
Aggregation

Guo [23] x
Andrienko et al. [1] x
Guo et al. [24] x
Flowstrates [11] x
MapTrix [41] x
EvoFlows x x

3 VISUALIZATION REQUIREMENTS

In this section, we describe the requirements to effectively analyze
origin-destination flow data and their underlying spatial-temporal
context. The following list is the result of discussions with scholars
in Economics, Demography and Computer Science.

[R1] Visualize and explore temporal variations. – The first re-
quirement is to depict the evolution of the magnitude of the flows
over time in order to identify time trends, peaks and valleys, and
variations across periods. In addition, we must take into account
both directions of flow values: inflow (entries) and outflow (exits).

For instance, peak periods in outflow could reveal important time
intervals to focus the user’s attention.

[R2] Visualize spatial distributions. – The second requirement
is to represent precisely the spatial position of each origin and each
destination, and to depict the value and the direction of each flow
in a specific period. For example, showing the destination flows
for a given origin could help to understand the role of neighboring
countries, or to highlight more general geographic patterns.

[R3] Scalability. – The third requirement is to enable the handling
of large datasets of origin-destination flows, and to support their
analysis over long intervals of time. For instance, a user could be
interested in analyzing a dataset about people migration between
countries (about 200 x 200 flows) over the last fifty years or so.

[R4] Highlighting and captioning. – Since the number of flows
can be large over a long period, mechanisms are needed to automati-
cally highlight specific moments (e.g., peaks) and to aggregate data
that is less relevant. Hence, the fourth requirement is to allow users
to emphasize moments in time, to remove unneeded detail, and to
take snapshots of certain moments.

[R5] Synchronization and animation. – The fifth requirement is
to provide synchronization between the different visual components
(i.e., the actions in a component that are also reflected in the others
involved). In addition, it must support animated transitions when
an action occurs (mouse hovering, filtering, zooming, etc.) and thus
preserve the mental map of the whole visualization [8].

The above list attempts to achieve the common tasks in the vi-
sual analysis of flow data. Our intention is to promote the use of
EvoFlows by the general public, as well as specialized users.

4 PROPOSED TECHNIQUE

This section describes our visualization design and functionalities.
Our exploration process follows the principle of the visual informa-
tion seeking mantra proposed by Shneiderman: overview first, zoom
and filter, then details on demand [34].

4.1 Design Rationale Summary
Based on the requirement analysis, we propose EvoFlows (Fig. 1),
a new visualization tool that facilitates the analysis of origin-
destination data flows. It is composed of several interactive and
synchronized components. The temporal view (Fig. 1a) is based
on MultiStream and depicts outflow and inflow evolution over time.
It allows the user to define the aggregation/disaggregation level of
the flows [R3]. It also automatically detects and highlights impor-
tant periods (e.g., peaks, steady increase in flow magnitudes) [R1,
R4]. The spatial view (Fig. 1b) is base on Flow Maps and shows
geographical locations at different levels of detail [R3], transmitting
the direction of each flow in a specific period [R2]. The snapshot
panel (Fig. 1c) allows adding and loading snapshots of the current
configuration for analysis and communication tasks [R4]. All these



components are synchronized with each other and support visual
animations [R5]. They are described in detail below.

4.2 Temporal View
Visualizing many data flows over time as an unordered stacked graph
strongly limits the discovery of interesting visual patterns [R1, R3].
MultiStream [17] was proposed as an improvement of stacked graphs
to allow organizing the data according to a hierarchical structure pro-
viding aggregation/disaggregation mechanisms [R4]. We propose
to reuse the MultiStream approach for visualizing flows. Indeed,
origin-destination data flows can naturally be aggregated using high-
level administrative divisions (e.g., countries, sub-regions, regions,
and continents). We must take into account that inflow (entries) and
outflow (exits) magnitudes can evolve differently over time. For in-
stance, the flow of people leaving Afghanistan is probably different
from the flow of people entering. To better adapt to this behavior, we
use two multistreams. Fig. 3 shows the temporal view and the two
multistreams that depict the outflow and inflow evolution worldwide
in a synchronized way (Fig. 3(a,b)).

4.2.1 Aggregation and Disaggregation of Flows
MultiStream also provides a hierarchy manager that controls the
level of spatial aggregation/disaggregation (Fig. 3d), which is it-
self tightly coupled with a time-controller (Fig. 3c). The hierarchy
manager (Fig. 3d) defines two levels. The coarse one is depicted
with a blue line; the fine one is depicted with a green line. This
component allows the user to perform aggregation/disaggregation
of flows interactively. Performing any of these actions, the levels of
abstraction are updated in the temporal and spatial view (Sect. 4.3).
For instance, thanks to the MultiStream approach, we can visual-
ize the African flows at a sub-regional level (e.g., Eastern, Middle
Eastern, etc.), whereas other flows are described at the country level.
This functionality offers flexibility in the level of detail that the
flows show i.e., flexible temporal aggregation [R1, R3]. To avoid
overloading the visual space, we link only one hierarchy manager
for both multistreams [R5].

4.2.2 Temporal Filter
The time-controller (Fig. 3c) defines the period of time over which
the stacked graph relies on the fine aggregation level rather than on
the coarse one. This corresponds to the gray region and the two
vertical blue lines on the time axis. Based on a brushing&linking
technique [9], it allows moving or expanding the time-controller to
update both multistreams [R5], thereby offering flexibility to focus
on a specific period of interest [R1]. This tool facilitates the analysis
over long periods of time [R3] using several interaction techniques
such as zooming [29], or focus+context [16, 20].

4.2.3 Color Coding
Categorical color coding is used to distinguish between different
branches in the hierarchy. For instance, Fig. 3(a,b) shows the evolu-
tion of refugee outflow/inflow by country where flows are colored
according to their continent (e.g., Africa in yellow, Asia in blue, and
so forth). This helps to preserve the mental map of flow evolution
and to enhance comparison tasks [R1].

4.2.4 Highlight Temporal Changes
It is often difficult to determine small or sudden variations in the
magnitudes of the time series of flows. Since the MultiStream
method stack layers on top of each other, at the end of this process,
the upper layers frequently suffer from readability due to the number
of layers under them. One solution to this problem is to use a
vertical rule that indicates the exact value of a single flow at each
time step [17]. We extend this technique and show the rule for all
flows, detailing information on the variation in the magnitude of
the flows. Fig. 3e shows contextual information of the main flows

including glyphs that transmit changes in the flow (e.g., increase,
decrease, or stationary) according to the previous year. We can see
that for the year 1999 the flow of refugees from Central America
increased, while that of Eastern Europe decreased with respect to
the year 1998. In addition, we observe that the Southern Europe
flow remains first. This facilitates the tasks of comparison between
flows [R1, R4]. This ruler is shown when users hover the cursor
over the temporal grid of the MultiStreams.

4.3 Spatial View
The purpose of the spatial view (Fig. 4) is to interact with the geospa-
tial context of the flows. This view is based on a Flow Map rep-
resentation to show the geographical locations of the origins and
destinations, the flow directions, and the flow values. Standard Flow
Maps connect each flow by an arrow where the thickness represents
the value. However, visual clutter increases when show large set of
flows. The larger number of lines that connect places disturb per-
ception to highlight patterns. Therefore, an aggregation technique
is required to alleviate this problem and thus improve scalability
capacities [R3].

4.3.1 Spatial Aggregation
We take advantage of the nature of the flows to be organized within
a hierarchy [17] and, following this structure, we perform a spatial
aggregation of their locations. This strategy allows us to i) interact
tightly with the temporal view and the hierarchy manager to control
the level of aggregation [R1, R5], ii) depict spatial locations at
different levels of detail [R2], iii) increase scalability by not using
a regionalization method whose computational cost is high for a
dynamic application [R3], and iv) reduce the number of flows to
show and improve exploration tasks [R1, R2, R3, R4].

The spatial aggregation process is carried out in a straightforward
way by grouping the flows according to their position in the hierarchy.
Therefore, the values of the flows in the upper levels are equal to the
sum of their children (Fig. 2). This process is done for all elements in
the structure. Interactions techniques are available in the hierarchy
manager to perform aggregation/disaggregation actions. It is this
component that manages the levels of abstraction in which the flows
are depicted in the temporal and spatial view.

Fig. 5 shows the outflow of refugees from Africa in 2016 at three
different levels of abstraction. In Fig. 5a, outflows are aggregated
at the continent level (i.e., America, Europe, Asia, and Oceania). A
portion of the hierarchical structure is shown on the left, where the
green line transmits the flows shown on the Flow-Map. To divide the
flows of this continental level, a tooltip is providing in the hierarchy
manager when users hover the mouse over a node (on the left of
Fig. 5a). Fig. 5b shows a Flop-Map after disaggregation. Notice
how the continents where split into regions following the process
described above. Green line in the hierarchy manager now crosses
flows at region levels. Finally, Fig. 5c shows outflows at a country
level and their respective levels in the hierarchy on the left.

Thanks to this flexibility, the user can compare spatial flows at
all levels of the hierarchical structure (i.e., to all possible variables
between countries, sub-regions, regions, and continents), and thus
reveal local or external patterns.

4.3.2 Depict Flows
To convey the magnitudes and directions of the flows, we propose
two representations: a point-map and a choropleth-map [6]. Con-
sidering the point-map, circles of equal area are positioned at the
centroid of the region/aggregated-region. A continuous two-hue
color palette is used to colored the circles in relation to the magni-
tude. The sequential color scheme varies between light green for low
values and dark blue for high values. We prefer this representation
to that of the bubble-map, where the area of the circle is propor-
tional to the magnitude, to avoid overlapping circles. Fig. 4 shows
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Figure 3: The temporal view. (a)(b) Two multistreams [17] depict the (a) outflows and (b) inflows evolution over time in a hierarchical organization.
(c) The time-controller defines the periods of time in which the multistreams show a certain hierarchy level. (d) The hierarchy manager allows
navigating through the hierarchy in both multistreams and the spatial view. (e)
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Figure 4: The spatial view showing the refugee flows leaving Middle-
Africa in 2017 using a point map representation. A two-hue color
scheme colors the circles in relation to the magnitude. (a) A tooltip
box shows textual information of a selected flow. (b) A bar chart
shows the top-k of flow magnitudes improving the recognition and
comparison of values.

a point map illustrating the refugee flows leaving Middle-Africa in
2017. We can note that the flows are aggregated at the continent
level (e.g., America, Europe, and so forth.), except in the African
continent where the flows are aggregated at the region level (e.g.,

Northern, Western, etc.). The origin location is shown in orange
and for each destination, flow values are depicted by a circle whose
color is proportional to its value. In addition, arrows can optionally
be added to represent flow directions and to strengthen the visual
link between origin-destination pairs. To avoid lines crossing, we
show flows for one origin or destination at a time.

The expressiveness of a visualization is improved by adding
contextual information (e.g., labeling). In a Flow map, due to the
constraints related to the number and predefined position of locations,
it is difficult to set a label for all geographic regions. Therefore,
labeling is not a minor tasks, since the establishment of labels for all
locations can lead to cluttering and overlapping issues. Our approach
uses a brute-force labeling algorithm [14] to find the best place to
set the region name and avoid overlap at each zooming and dragging
interaction [R5]. Furthermore, we show the flow arrow outside the
circle and the label in the opposite direction. This careful design
improves visual perception avoiding the overlapping between circle,
label, and arrow of the same flow [R3]. For instance, look at the
arrangement of arrows and labels in Fig. 4. The labels of the regions
north of Middle Africa are positioned above the circles (e.g., Western
and Northern Africa, Asia, Europe, etc.); while the regions that are
to the south, are shown below the circles (e.g., Eastern Africa).

In Fig. 4, we identify a high density of refugees in neighboring
countries (e.g., Eastern Africa). Depending on the size of the circles,
some magnitudes are difficult to analyze. Therefore, the values can
also be represented into the geographical areas using a choropleth
map. In this representation, the same palette color of the point map
is used. For instance, Fig. 1a shows a choropleth representing the
entering refugee flows into Kenya in 2007. As can be observed,
the main countries of origin are the close neighbors. However,
even if the choropleth map reveals geographic patterns, deducing
relative differences between values can be difficult. In addition,
larger regions tend to have a greater weight on the visual map. To
overcome these issues, a bar chart representation (Fig. 4b) shows
the top-k flow magnitudes for the selected period.
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Figure 5: Spatial disaggregation of refugees leaving from Africa. (a)
Outflows are shown in a high level of detail. (b) Splitting high level
outflows into their children according to the hierarchy. (c) Outflows are
shown at a detail level according to the hierarchy. Arrows are hidden
to avoid clutter.

4.3.3 Highlight Flow Magnitudes

The purpose of the point-map and the choropleth-map is to reveal
spatial patterns at a glance. However, the color abstraction used
in these maps does not accurately represent the value of the flow,
because the coding of quantitative values is not accurate in a color
scheme. To overcome this issue, a tooltip box convey textual infor-
mation (i.e., date, region name, and the flow magnitude). It is shown
by demand while the mouse hovers a location (Fig. 4a); however,
this strategy only shows the magnitude of a single flow. A bar chart
representation is used to improve readability and reveal accurate
values. Bar charts use the position and length which are better visual
channels for exploring and comparison tasks [15] [R2, R4]. Fig. 4b
shows the flow magnitudes in descending order in a horizontal bar
chart. Thanks to this chart we can see clearly flow magnitudes and
compare between them, which is not possible with a standard Flow
Map.

For instance, in Fig. 4, it is difficult to discern the exact val-
ues of refugee flows to Europe and America, since the colors are
close. However, using the bar chart (Fig. 4b) we can see that Eu-
rope has 45K refugees, which is more than triple the number of
refugees in America with 14K. In addition, the descending order of
the bars allows comparison between them. We can see that Northern
Africa (11K) and America (14K) receive almost the same number of
refugees from Middle Africa in 2017.

4.4 Snapshot Panel

Exploring the data is an interactive task and discovering parameters
in different views to highlight patterns can take some time. In a
context of analysis, users may find interesting moments that get their
attention (e.g., peaks), they probably want to save those moments for
further analysis in the future. The snapshot panel (Fig. 1c) provides
mechanisms to freeze and record the parameters of EvoFlows, and
thus create static narrative moments. They are listed in a reverse-
chronological order of entry, the newest above. The user can then
navigate easily in the snapshot list to restore those parameters in
just one click in order to create a storytelling of the data [R4] [13].
Fig. 1c shows this panel displaying a list of snapshots. Standard
features are provided, such as loading, saving and deleting.

5 INTERACTIONS

In this sections we describe the different interactions between the
visual components proposed in EvoFlows. Interaction techniques
aim to help users in exploration and analysis tasks.

5.1 Visualizing Spatio-Temporal Changes

The temporal and the spatial views are synchronized with the joint
objectives of navigating along the flows at different levels of de-
tail [R1, R2, R3] and conserving the mental map during the explo-
ration process [R5]. Moving the mouse over a flow in the temporal
view generates the following updates: i) the ruler is positioned over
the flow at a desired time-step, ii) the color of the selected flow is
fully saturated while the opacity decreases in the others, and iii)
all the component in the spatial view are updated according to the
selected time-step (i.e., the flow-map and the bar chart depicting the
magnitudes). By clicking on a flow in a desired time step, the flow
remains fixed on that date, allowing the user to interact/navigate on
the map. The possible actions are: toggle between a point and choro-
pleth map, hide/show the arrows of the flows to alleviate cluttering,
and perform a zooming in/out which updates the labels of locations
taking care that they do not overlap. Clicking again on the flow in
the temporal view deactivates the selection. Hence, the user can
freely navigate back and forth in time and explore spatial patterns
on the map in a coordinated manner.

Fig. 1a shows the Kenya inflow highlighted in 2011. As it is
an inflow, the map view (Fig. 1b) depicts the entering flows to
Kenya in that year. We can notice a strong local pattern, i.e., a
high number of refugees entering from neighboring countries (e.g.,
Somalia, Ethiopia, Dr. Congo, and Sudan). This technique is adapted
to analyze a precise moment of the time series of the flows. However,
it has some limits, such as the loss of temporal context on the map,
or the difficulty of selecting with the cursor a small flow in the
temporal view. In order to overcome these issues, some approaches
propose the use of animated transitions between visual components
that preserve the context [13, 21, 27, 36]. We consider this technique
to assist users link the temporal and the spatial view and, therefore,
reduce cognitive load.

5.2 Animated Transitions

Heer et al. [27] demonstrate the effectiveness of animated transition
to preserve the data context between several graphics such as bar
charts, pie charts, and scatter plots [27]. The study of Griffing et



al. [21] reveals that animations are more effective to convey and dis-
cover geographical patterns than static small-multiples. A qualitative
study of Boyadin et al. [12] observe that animation helps to recog-
nize geographically local events and changes between subsequent
years. Recently, Brehmer et al. [13] use this technique in a design
of a space for narrative visualizations in a context of storytelling. In
our work, we consider the use of animated transitions to enhance
visual perception of temporal changes on the map and preserving
the context.

To ensure the effectiveness of animations in a visual component,
there are three principal points to consider [13]: i) the initial states of
the visual elements in the component, ii) the animation considering
those elements as a whole or separately, iii) the trajectory of the
animation, and iv) the control of the transition speed. The process
we follow to address these considerations are listed below:

1. Considering the first point, the initial state of the animation is
when the user, with the cursor, selects a time-step by clicking
on it. This action fixes the temporal and spatial view for that
selected time-step; e.g., the inflow of Kenya is fixed in 2011
(Fig. 1a) as well as the spatial components that show flow the
positions and magnitudes for that year (Fig. 1b). This state is
the same as described above, when the user freely explore time
series of flows. Once the flow is fixed at the desired time-step,
a play button appears at the bottom-left of the temporal view
(Fig. 1d). This button allows the user to continue with the
animation transition process.

2. Regarding the second point, we perform a synchronized transi-
tion, i.e., all visual elements begin transitions at the same time.
Therefore, when the user clicks on the play button, the rule
above the selected flow begins to move to the next time-step,
and the flow-map and the bar chart are also updated. This is
a loop process performed for each time-step over the period
selected by the time-controller (Fig. 3).

3. The third consideration is about the trajectory of the animation.
In the temporal view, animation moves the ruler in a linear
transition. In the spatial view, sudden changes in the magni-
tudes and positions of the flows increase the cognitive load. To
alleviate this problem, the flow arrows are animated from their
origin to their destination location. The bar chart can improve
the animation transition in two ways, by setting the maximum
value on the horizontal axis and filtering the elements to show
on the vertical axis. Fig. 6a shows the horizontal axis locked
at its maximum value according to the period selected in the
time-controller. On the other hand, the vertical axis can filter a
subset of flows to represent. Fig. 6b shows this functionality
that allows users to select the flows.

4. Concerning the last point. We implement a set of buttons to
control the speed of the animation when it is executed. In
addition, it allows the user to start, pause, and resume the
animation transition process.

Our animation transition process aims to explore the spatio-
temporal context of the flows through the visual components of
EvoFlows [R1, R2, R3, R5]. This technique improves the analysis,
especially when flows changes suddenly, with a fixed layout of the
bar chart through this process.

5.3 Exploring Events
To assist users, we automatically highlight important changes in flow
trend. To graphically represent such events, a visual mark is placed
in relation to the horizontal axis of MultiStreams.

We propose two methods to get insight of time series of flows.
The first with the objective of showing sudden changes in flows (e.g.,
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Figure 6: A bar chart allows to fix the layout. (a) Horizontal axis can
be remains locked a the maximum value. (b) Vertical allows to pick
and filtering a subset of flows.

when a peak or pit occurs) [R4]. To achieve this, we calculate the
percentage of variation between consecutive time steps and show the
variations that exceeds a given threshold. For instance, the outflow
in Fig. 3a shows several icons over time and highlights periods at
which the number of refugees increases significantly in percentage
compared to the previous year. Observe the flow of Southern Europe
in 1992, a red icon represents an increases in 500%. The second
method shows a steady increase in the magnitude of the flow over
a period. Such events may attract the user’s attention for a further
analysis. We are looking for an algorithm that does not decrease
the performance of EvoFlows [R5] (ideally in O(n)). Therefore,
we use the Maximum Sum Contiguous Subarray method. This
algorithm looks for the magnitudes of time series in a time window
and maintains the maximum sum of contiguous segments.

These methods facilitate analysis when flows are observed over
long periods [R1, R3, R4]. The top of the temporal view (Fig. 1a)
provides input mechanisms for these methods.

6 DISCUSSION

In this section, we discuss the facilities of EvoFlows to analyze and
efficiently explore the spatio-temporal dimensions of time series
flows. We compare our approach with other approaches that support
temporal and spatial aggregations.

6.1 Visualizing Temporal Aggregations

Exploring large time series of flows is challenge due to some is-
sues such as scalability, limit screen size, etc. Several previous
approaches use a dedicated temporal view to depict flow evolutions
over time. For instance, Flowstrates [11] and MapTrix [41] use a
heatmap representation to represent flow evolutions. However, the
main issue of these techniques is the scalability. The heatmap do not
depict precisely the flow magnitude; therefore, it does not support
multiple time series of flows. In addition, flow databases are often
long, that is, they cover too much historical data (e.g., migration
record 50 years ago). A common issue in the visualization of this
data is the limited screen space.

In this research, we rely on the MultiStream approach [17] to
overcome these difficulties. MultiStream organizes time series of
flows in a hierarchical structure to provide aggregation and disaggre-
gation throughout time series and, therefore, depict them at different
levels of abstraction. In order to explore and analysis long time
series, the MultiStream uses several interaction techniques such as
focus+context, fisheye, and zoom to focus on a time segment for
further analysis.

6.2 Visualizing Spatial Aggregations

Grouping spatial locations reduces visual clutter in a Flow-Map rep-
resentation. However, this involves dealing with some drawbacks,



such as: depicting the directions of the flows, magnitudes and loca-
tions. To overcome these problems, spatial aggregations are used.
These techniques groupe the flows between origins and destinations
with the objective of representing fewer flows.

Aggregate spatial local, reduce the visual clutter in a visualization.
Dealing with Flow-Map entails some drawbacks such as: depicting
flow directions, magnitudes and locations. In order to overcome
these issues, spatial aggregations is used. This technique group flows
between origins and destinations in order to depict less flows.

Previous approaches [1,23,24] use the flow structures to bundling
regions using, as for example the regionalization technique. How-
ever, they do not accurately show all the characteristics of the flows
(directions and magnitudes). In addition, the execution time of this
techniques is not adapted for dynamic visualizations.

EvoFlows is based on the nature of the series of flows that will be
organized in a hierarchical structure to perform a spatial aggregation
following this structure. This technique allows closely interact with
the temporal and context of flows. In addition, due to the use of a
hierarchy, flows can be aggregated in different levels of detail; thus,
a Flow-Map can represent flows locations at different levels. This
feature is not provided by any other previous approach.

7 APPLICATION EXAMPLE

To illustrate the concepts and the performance of EvoFlows, we
focus here on dyadic flows of refugee migrants over the last 59 years.
Refugee migration has become a topical issue in many industrialized
countries. The number of asylum applications lodged in 2015 in EU
Member States exceeded 1.3 million. This placed migration policy
in the forefront of the global policy debate, as is often the case after
each immigration peak. We show here how our tool can be used
to put the recent refugee crisis into perspective and highlight the
geographic patterns of short-term and long-term movements.

7.1 Data on Refugee Migration
For our application, we use the UNHCR database on global refugee
movements.1 This data set documents the annual flows of refugee
migrants from 195 origin to 195 destination countries over the period
1960-2018. Each entry contains the following details: the year of
observation, the country of origin, the country of destination, and
the recorded number of refugee migrants.

7.2 Visual Analysis
Fig. 7 focuses on the temporal dimension and depicts the long-
running trends in worldwide outflows and inflows of refugees. Coun-
tries are grouped by region or by continent. This kind of organization
forms a hierarchical structure, where the first level is composed of 5
continents (Africa, Asia, Europe, America, and Oceania), the sec-
ond level is composed of regions (e.g., Northern Africa, Central
Asia, Eastern Europe, etc.), and the third level is composed of 195
countries. Categorical color coding is used to represent the main 5
continents (Africa in yellow, Asia in blue, Europe in red, America
in purple, and Oceania in orange). The thickness of a layer features
the magnitude of the annual outflow or inflow of refugees.

The top panel of Fig. 7 depicts the evolution of annual outflows
at the aggregate regional level (e.g., Eastern Africa, Middle Africa,
etc.) except for the Asian continent (in blue) for which the country
level disaggregation is used (e.g., Afghanistan, Iran, Pakistan, Syria,
etc.). The figure shows that the worldwide stock of refugees started
to increase in the early seventies and reached a peak in the early
nineties. Outflows from Asia, from Afghanistan in particular, and
from sub-Saharan Africa are governing the trends. After 1994, this
number began to decrease until the year 2000, and remained stable
until 2010. The recent refugee crisis appears after 2014. Until 2010,
the exodus from Afghanistan is the most remarkable fact, but in

1http://popstats.unhcr.org/en/personso fconcern

Figure 7: Temporal evolution of annual refugee stocks. Focus on the
1975 - 2015 period.

2012 the number of refugees leaving Syria makes the flow of this
country surpasses that of Afghanistan. The red icons are helpful to
spot migration surges. For example, a 500k increase in the number
of refugees from Syria in 2012 compared to the previous year, the
same phenomenon occurs until 2018.

As each outflow generates an inflow of an identical size, the bot-
tom panel highlights the main destinations of refugee migrants. We
find that Iran, Pakistan and (to a lesser extent) India hosted most
Asian refugees between the mid-seventies and the mid-nineties. The
bottom panel also demonstrates that North America and Europe
hosted a small proportion of the total stock of refugees. This obser-
vation holds true in the recent years despite the fact that the Syrian
exodus has been perceived as a massive refugee crisis. In sum, Fig. 7
provides important insights in the sources of refugee flows as well
as in out- and in-migration peaks. The map provides complementary
information on these patterns.

Fig. 8 shows the refugee outflows from Syria using choropleth
maps for the years 2012 and 2018. A high level of spatial abstraction
(i.e., regions) is shown in a1 and b1, while a detailed spatial level
(i.e., countries) is depicted in a2 and b2. As pointed out before, there
is a first peak in the outflow in 2012, which reached 730K people.
The map in Fig. 8(a1) reflects the strong geographic concentration of
Syrian refugees. Most of them moved to a neighboring country such
as Turkey, Jordan or Iraq, but they also moved to EU regions such
Western Europe. Fig. 8(a2) reveals that within the Western Europe
region, the countries where Syrian refugees moved are Germany and
Sweden (note the dark color of these countries). Similarly, Fig. 8(b1)
shows a high spatial comparable information for the year 2018. In
that year, the number of Syrian refugees reached 6.7M. The local
spatial distribution is similar to that of 2012 (see Fig. 8(a1)). A large
majority of refugees moved to the neighboring countries. However,
Fig. 8(b2) reveals that a non-negligible fraction of them decided
to move longer distances (e.g., to Germany, Austria, Spain, Sudan,
Morocco or Nigeria). As an interesting point, we can say that the
Syrian refugees move more towards the Eastern countries, probably
due to the political problems with the countries of the West (e.g.,
Afghanistan and Libya). This behavior is evident by comparing
Fig. 8(a2) y (b2).
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Figure 8: Temporal and spatial comparison of refugees leaving Syria in 2012 and 2018.

8 CONCLUSION AND FUTURE WORK

In this paper, we present EvoFlows, an interactive visualization tool
that allows to highlight and explore the spatio-temporal patterns
underlying origin-destination flow data. EvoFlows is based on three
interactive components: (i) the spatial view that uses maps to rep-
resents the geographic features of the data, (ii) the temporal view
that uses a stacked approach to represent the temporal dimension at
different spatial scales, and (iii) the snapshot panel that allows to
save/load a snapshot to enhance communication tasks. Our work
enhances temporal and spatial exploration through tailored animated
transitions between visual components. The tool also eases the ex-
ploration task by highlighting remarkable periods in the evolution
of flows. Moreover, EvoFlows was tested using a real-world dataset
that contained 195x195 refugee movements worldwide, overcoming
the problem of scalability present in previous approaches.

As future work, we plan to study three aspects: (i) test
EvoFlows for other application domains like animal movements
or network traffic, (ii) conduct a formal user study compared with
similar approaches, and (iii) include advanced change point detection
algorithms [3,25] to automatically discover interesting configuration
snapshots.
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