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Abstract. Transition time constraints are ubiquitous in scheduling prob-
lems. They are said to be sequence-dependent if their durations depend
on both activities between which they take place. In this context, we
propose to extend the ©-tree and ©-A-tree data structures introduced
by Vilim in order to strengthen the bound computation of the earli-
est completion time of a set of activities, by taking into account the
sequence dependent transition time constraints. These extended struc-
tures can be substituted seamlessly in the state-of-the-art Vilim’s filter-
ing algorithms for unary resource constraints (Overload Checking, De-
tectable Precedences, Not-First /Not-Last and Edge-Finding algorithms)
without changing their O(nlog(n)) time complexities. Furthermore, this
new propagation procedure is totally independent from additional con-
straints or the objective function to optimize. The proposed approach is
able to reduce the number of nodes by several order of magnitudes on
some instances of the job-shop with transition times problem, without
introducing too much overhead on other instances for which it is less
effective.
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1 Introduction

This work extends the classic unary/disjunctive resource propagation algorithms
to include propagation over sequence-dependent transition times between activ-
ities. A wide range of real-world scheduling problems from the industry involves
transition times between activities. An example is the quay crane scheduling
problem in container terminals [22] where the crane is modeled as a unary re-
source and transition times represent the moves of the crane on the rail to move
from one position to another along the vessel to load /unload containers.

We introduce filtering algorithms to tighten the bounds of (non-preemptive)
activities while taking into account the transition times between them. These
filtering algorithms are extensions of the unary resource propagation algorithms
(Overload Checking, Detectable Precedences, Not-First /Not-Last, Edge-Finding)
introduced in [18]. All these algorithms rely on an efficient computation of the
earliest completion time (ect) of a group of activities using the so-called Theta



tree and Theta-Lambda tree data structures. We demonstrate the efficiency of
the filtering on job-shop with transition times problem instances.

In Section 2, we give an overview of the tackled problems and of current
state-of-the-art techniques to solve them. In Section 3, we explain the require-
ments needed to integrate transition times propagation. Section 4 explains how
to obtain lower bounds for the time spent by transitions between activities from
a set. Then, Section 5 describes how to integrate this bound to efficiently com-
pute the ect of a set of activities with extended ©-tree structures. Section 6 then
explains how classic unary algorithms can consider transition times by using
the extended ©-tree structures. Finally, we report results obtained by the new
propagation procedure in Section 7.

2 Background

In Constraint Programming (CP), a scheduling problem is modeled by associat-
ing three variables to each activity A;: start;, end;, and duration; representing
respectively the starting time, ending time and processing time of A;. These
variables are linked together by the following relation:

start; + duration; = end;

Depending on the considered problem, global constraints linking the activity
variables are added to the model. In this work, we are interested in the unary
resource constraint. A unary resource, sometimes referred to as a machine, is a
resource allowing only a single activity to use it at any point in time. As such,
all activities demanding the same unary resource cannot overlap in time:

Vi,j i j: (end; < start;) V (end; < start;)

The unary resource can be generalized by requiring transition times between
activities. A transition time ¢¢; ; is a minimal amount of time that must occur
between two activities A; and A; if A; < A; (precedes). These transition times
are described in a matrix M in which the entry at line ¢ and column j represents
the minimum transition time between A4; and A;, t¢; ;. We assume that transition
times respect the triangular inequality. That is, inserting an activity between two
activities always increases the time between these activities:

Vi,j,k‘ 7 75] 7é k- tti,j < ttiJg + tth‘
The unary resource with transition times imposes the following relation:

Vi, j: (end; + tt; ; < start;) V (end; + tt;; < start;) (1)

2.1 Related Work

As described in a recent survey [2], scheduling problems with transition times
can be classified in different categories. First the activities can be in batch (i.e.



a machine allows several activities of the same batch to be processed simulta-
neously) or not. Transition times may exist between successive batches. A CP
approach for batch problems with transition times is described in [18]. Secondly
the transition times may be sequence-dependent or sequence-independent. Tran-
sition times are said to be sequence-dependent if their durations depend on
both activities between which they occur. On the other hand, transition times
are sequence-independent if their duration only depend on the activity after
which it takes place. The problem category we study in this article is non-batch
sequence-dependent transition time problems.

Several methods have been proposed to solve such problems. Ant Colony
Optimization (ACO) approaches were used in [9] and [15] while [6], [4], [13] and
[10] propose Local Search and Genetic Algorithm based methods. [13] proposes
a propagation procedure with the Iterative Flattening Constraint-Based Local
Search technique. The existing CP approaches for solving sequence-dependent
problems are [8], [3], [21] and [11].

Focacci et al [8] introduce a propagator for job-shop problems involving al-
ternative resources with non-batch sequence-dependent transition times. In this
approach a successor model is used to compute lower-bounds on the total tran-
sition time. The filtering procedures are based on a minimum assignment al-
gorithm (a well known lower bound for the Travelling Salesman Problem). In
this approach the total transition time is a constrained variable involved in the
objective function (the makespan).

In [3], a Travelling Salesman Problem with Time Window (TSPTW) re-
laxation is associated to each resource. The activities used by a resource are
represented as vertices in a graph and edges between vertices are weighted with
corresponding transition times. The TSPTW obtained by adding time windows
to vertices from bounds of corresponding activities is then resolved. If one of the
TSPTW is found un-satisfiable, then the corresponding node of the search tree
is pruned. A similar technique is used in [5] with additional propagation.

In [21], an equivalent model of multi-resource scheduling problem is proposed
to solve sequence-dependent transition times problems. Finally, in [11], a model
with a reified constraint for transition times is associated to a specific search to
solve job-shop with sequence-dependent transition times problems.

To the best of our knowledge, the CP filtering introduced in this article is
the first one proposing to extend all the classic filtering algorithms for unary
resources (Overload Checking [7], Detectable Precedences [17], Not-First/Not-
Last [19] and Edge Finding [19]) by integrating transition times, independently of
the objective function of the problem. This filtering can be used in any problem
involving a unary resource with sequence-dependent transition times.

2.2 Unary Resource Propagators in CP

The earliest starting time of an activity A; denoted est;, is the time before which
A; cannot start. The latest starting time of A;, Ist;, is the time after which A;
cannot start. The domain of start, is thus the interval [est;; ls¢;]. Similarly the
earliest completion time of A;, ect;, is the time before which A; cannot end and



the latest completion time of A;, lct;, is the time after which A; cannot end. The
domain of end; is thus the interval [ect;; lct;]. These definitions can be extended
to a set of activity {2. For example, est, is defined as follows:

esto = min {est;|j € 02}

The propagation procedure for the unary resource constraint introduced in
[18] contains four different propagation algorithms all running with time com-
plexity in O(nlog(n)) : Overload Checking (OC), Detectable Precedences (DP),
Not-First/Not-Last (NF/NL) and Edge Finding (EF). These propagation algo-
rithms all rely on an efficient computation of the earliest completion time of a
set of activities {2 using data structures called Theta Tree and Theta-Lambda
Tree introduced in [18]. Our contribution is a tighter computation of the lower
bound ecty, taking into account the transition times between activities.

3 Transition Times Extension Requirements

The propagation procedure we introduce in this article relies on the computation
of ecty;, the earliest completion time of a set of activities. This value depends on
the transition times between activities inside 2. Let II; be the set of all possible
permutations of activities in 2. For a given permutation m € IT (where m(7)
is the activity taking place at position i), we can define the total time spent by
transition times, tt,, as follows:

|2]-1
e = Z T (i),m(i+1)
i=1

A lower bound for the earliest completion time of {2 can then defined as:

tpf = to / in 2

ectq }anz{esn +po + min 71'} (2)
Unfortunately, computing this value is NP-hard. Indeed, computing the optimal
permutation 7w € I minimizing ¢¢, is equivalent to solving a TSP. Since embed-
ding an exponential algorithm in a propagator is generally impractical, a looser
lower bound can be used instead:

= ’ ’ /
ectn = g/lg)r(){estg + por + tt(82)}

where tt(£2') is a lower bound of the total time consumed by transition times
between activities in §2':
#(2') < min tt,
wEIl
Our goal is to keep the overall O(nlog(n)) time complexity of Vilim’s al-
gorithms. The lower bound #¢(f2') must therefore be available in constant time
for a given set {2’. Our approach to obtain constant time lower-bounds for a



given set 2’ during search is to base its computation solely on the cardinality
[£2’|. More precisely, for each possible subset of cardinality k£ € {1,...,n}, we
pre-compute the smallest transition time permutation of size k on (2:

(k) = min { min ttw}
{2/C2: [2|=k} | m€My

For each k, the lower bound computation thus requires to solve a resource con-
strained shortest path problem (also NP-hard) with a fixed number of edges &
and with a free origin and destination. The next section proposes several ways
of pre-computing efficient lower bounds ¢t(k) for £ € {1,...,n}. Our formula
to compute a lower bound for the earliest completion time of a set of activities
(making use of pre-computed lower-bounds of transition times) becomes:

< — / ’ .Q,
ectg g}g}({){estrz + por + 1(|92))} (3)

4 Lower Bound of Transitions Times

The computation of tt(k) for all k € {1,...,n} is NP-hard. This is a constrained
shortest path problem (for & = n it amounts to solving a TSP) in a graph
where each node corresponds to an activity and directed edges between nodes
represent the transition time between corresponding activities. Although these
computations are achieved at the initialization of the constraint, we propose to
use polynomial lower bounding procedures instead. Several approaches are used
and since none of them is dominated any other one, we simply take the maximum
of the computed lower bounds.

Minimum Weight Forest A lower bound for tt(k) is a minimal subset of edges
of size k taken from this graph. We propose to strengthen this bound by using
Kruskal’s algorithm [12] to avoid selecting edges forming a cycle. We stop this
algorithm as soon as we have collected k edges. The result is a set of edges
forming a minimum weight forest (i.e. a set of trees) with exactly k edges.

Dynamic Programming We can build the layered graph with exactly k layers and
each layer containing all the activities. Arcs are only defined between two suc-
cessive layers with the weights corresponding to the transition times. A shortest
path on this graph between the first and last layer can be obtain with Dijkstra.
By construction this shortest path will use exactly k transitions, the relaxation
being that a same activity or transition can be used several times.

Minimum Cost Flow Another relaxation is to keep the degree constraint but
relax the fact that selected edges must form a contiguous connected path. This
relaxation reduces to solving a minimum cost flow problem of exactly k£ units on
the complete bipartite graph formed by the transitions.



Lagrangian Relazation As explained in Chapter 16 of [1], the Lagrangian relax-
ation (a single Lagrangian multiplier is necessary for the exactly k transitions
constraint) combined with a sub-gradient optimization technique can easily be
applied to compute a lower bound on the constrained shortest path problem.

5 Extending the @-tree with Transition Times

As introduced in [20], the O(nlogn) propagation algorithms for unary resource
use the so-called ©-tree data structure. We propose to extend it in order to
integrate transition times while keeping the same time complexities for all its
operations.

A O-tree is a balanced binary tree in which each leaf represents an activity
from a set © and internal nodes gather information about the set of (leaf) activ-
ities under this node. For an internal node v, we denote by Leaves(v), the leaf
activities under v. Leaves are ordered in non-decreasing order of the est of the
activities. That is, for two activities ¢ and j, if est; < est;, then ¢ is represented
by a leaf node that is at the left of the leaf node representing j. This ensures the
property :

Vi € Left(v),Vj € Right(v) : est; < est;

where left(v) and right(v) are respectively the left and right children of v, and
Left(v) and Right(v) denote Leaves(left(v)) and Leaves(right(v)).

A node v contains precomputed values about Leaves(v): XP,, represents the
sum of the durations of activities in Leaves(v) and ect, is the ect of Leaves(v).
More formally, the values maintained in an internal node v are defined as follows:

SPy= Y p

j€Leaves(v)

ecty = GCtLeaves(v) = @’ggégfries(v) {GSt@' + P@’}
For a given leaf | representing an activity i, the values of X’P; and ect; are p;
and ect;, respectively. In [18] Vilim has shown that for a node v these values
only depends on the values defined in both its left(v) and right(v) child. The
incremental update rules introduced in [18] are:

EPU = ZPleft(v) + ZPright(’U)
ect, = max { eCtright(v)s €Clieft(v) + EPright(v)}

An example of a classic ©-tree is given in Figure 1.

When transition times are considered, the ect, value computed in the internal
nodes of the ©-tree may only be a loose lower-bound since it is only based on
the earliest start times and the processing times. We strengthen the estimation
of the earliest computation times (denoted ect*) by also considering transition
times. We add another value inside the nodes: n, is the cardinality of Leaves(v)
(ny, = |Leaves(v)|). The new update rules for the internal nodes of a ©-tree are:



YP =65
ect =70

est, =0 esty = 15 est. = 25

Ppa = 10 py = 10 pe =20
YP, =10 YPy, =10 YP. =20
ect, = 10 ecty, = 25 ect. = 45

Fig. 1: Classic ©-tree as described in [18].

2P, = EPleft(v) =+ EPright(v)

T = Nieft(v) + Nright(v)
cot® — max{ect:ight(v), ectl*eﬁ(v) + XPright(v) T t(Nright(v) + 1)} : v internal
v ecty, : v leaf

As an example, let us consider the set of four activities used in the @-tree
example of Figure 1. Let us assume that the associated transition times are as
defined in the matrix M of Figure 2. The lower bounds for set of activities of
different cardinality are reported next to the matrix. With the new update rules

Lower Bound k=1 k=2 k=3
0 101318 Min ngght Forest ' 10 20 31
12 0 15 15 Dynamic Programming 10 20 32
M= 1018 0 20 Min Cost Flow 10 20 33
191116 0 Lagrangian Relaxation 10 20 39
tt(k) 10 20 33

Fig. 2: Example of transition time matrix and associated lower bounds of tran-
sition times permutations.

defined above, we obtain the extended ©-tree presented in Figure 3. Note that
the values of ect® in the internal nodes are larger than the values of ect reported
in the classic ©-tree (Figure 1).

Lemma 1. ect, < ect < €cly . ) = MAX0/C Leaves(v) { €ster + por + LL(|O'])}

Proof. The proof is similar to the proof of Proposition 7 in [18], by also inte-
grating the inequality ¢£(]0@'|) > t£(|0'| N Left(v)]) + £(|©'| N Right(v)]), which
is itself a direct consequence of the fact that tt(k) is monotonic in k.

Since the new update rules are also executed in constant time for one node, we

keep the time complexities of the initial O-tree structure from [18] which are at
worst O(nlog(n)) for the insertion of all activities inside the tree.



est, =0 est, = 15 est. = 25

Pa =10 po =10 pe =20
XP, =10 XPy, =10 YP.=20
ecty =10 ecty =25 ecty =45
Ng = 1 ny =1 ne =1

Fig.3: Extended O-tree for transition times. The ect* values reported in the
internal nodes have been computed using the update rule of the extended ©-
tree.

Extending the @-A-tree with Transition Times

The Edge-Finding (EF) algorithm requires an extension of the original O-tree,
called ©-A-tree [18]. This extension is used to obtain an efficient EF algorithm.
In this extension, in addition to the activities included in a O-tree, activities
can be marked as gray nodes. Gray nodes represent activities that are not really
in the set ©. However, they allow to easily compute ectg if one of the gray
activities were included in @. If we consider the set of gray activities A such that
ANO =, we are interested in computing the largest ect obtained by including
one activity from A into ©:

ecto,n) = rlnea% ectou{i}

In addition to XP,, ect,, the ©-A-tree structure also maintains P, and ect,,
respectively corresponding to X'P, and ect,, if the single gray activity in the
sub-tree rooted by v maximizing ect, were included:

—%k _ * *
ecl(g, 1) = Max {ect@, r?g}f{“t@u{i}}}

The update rule for ¥P, remains the same as the one described in [18]. However,
following a similar reasoning as the one used for the extended O-tree, we add



the n, value, and update rules are modified for ect, and 7,. The rules become:
ﬁv = max {ﬁleft(v) + ZPTight(v)v EPleft(v) + ﬁright(v)}
aj:“ight(v)7
;k) = Imax aZﬁeft('u) + Z]Pright(v) + E(nright(v) + 1)a
eCtl*eﬂ(U) + ﬁm’ght(u) + E(ﬁright(v) + 1)

ect

{ n, + 1 if the subtree rooted in v contains a gray node
Ty =

Ty otherwise

This extended ©-A-tree allows us to efficiently observe how the ect* of a set of
activities is impacted if a single activity is added to this set. This information
allows the EF algorithm to perform propagation efficiently'. An example of ©-
A-tree based on the example from Figure 3 and Figure 2 is displayed in Figure 4.

(esta -0 ) (estb =15 est. = 25 (estd =30
pa = 10 Py = 10 pe = 20 pa = 25
YP, =10 2Py, =10 2P, =0 XPq =25
ect, = 10 ecty =25 ect;, = —o0 ecty =55
ng =1 n, =1 ne =20 ng =1
YP, =10 YP, =10 YP. =20 YPy=25
ect, =10 ecty, =25 ect, =45 ecty =55
(e =1 | =1 ne =1 (ma=1 |

Fig. 4: Extended @-A-tree with modified update rules.

Similarly to the reasoning applied for the ©@-tree, the time complexities re-
main the same as the ones for the original ©-A-tree structure from [18|, which
are at worst O(nlog(n)).

! Finding the “responsible” activity arg max; ectoug;} (required by EF) is done simi-
larly to [18].



6 Disjunctive Propagation Algorithms with Transition
Times

In [18], a propagation procedure for the unary resource constraint is defined.
This propagation procedure consists of a propagation loop including Overload
Checking (OC), Detectable Precedences (DP), Not-First /Not-Last (NF/NL) and
Edge Finding (EF) propagation algorithms. The first three rely on the O-tree
while the latter employs the ©-A-tree. Some small modifications can be done
to these algorithms to obtain an efficient propagation procedure making use of
knowledge about transition times.

6.1 Extension of Classic Unary Resource Propagation Algorithms

The four mentioned propagation algorithms use a ©-tree or a ©-A-tree to com-
pute ectg on a set of activities ©. OC checks if ectg > lctg. DP, NF/NL and
EF rely on a set of rules that potentially allow to update the est or Ict of an
activity. They all incrementally add/remove activities to a set of activities ©
while maintaining the value ectg. When a rule is triggered by the consideration
of a given activity, the est or lct of this activity can be updated according to
the current value of ectg.

These four propagation algorithms can be used for the propagation of the
transition time constraints. To do so, we propose to substitute in the filtering
algorithms the ©-tree and the ©-A-tree structures by their extended versions.
In the presence of transition times, ect* /a* is indeed a stronger bound than
ect /ect. Furthermore, the update rules can be slightly modified to obtain an even
stronger propagation. When one of these algorithms detects that an activity ¢ is
after all activities in a set @, the following update rule can be applied:

est; < max {est;, ecty}

In addition to all the transitions between activities of @ - already taken into
account in ecty, - there must be a transition between one activity and 7 (not
necessarily from 6, as we do not know which activity will be just before ¢ in
the final schedule). It is therefore correct to additionally consider the minimal
transition from any activity to i. The update rule becomes:

est; < max {&Stm ecty + m;n ttj’i}
JF

An analogous reasoning can be applied to the update rule of the Ict of an activity.

Similarly to the fix point propagation loop proposed in [18] for the unary
resource constraint, the four extended propagation algorithms are combined to
achieve an efficient propagation on transition time constraints. This allows to
obtain a global propagation procedure instead of the conjunction of pairwise
transition constraints described by Equation 1. The approach has however the
disadvantage that the computation of ectf, integrates a lower bound. This pre-
vents having the guarantee that sufficient propagation is achieved. The loop



must thus also integrate the conjunction of pairwise transition constraints given
in Equation 1. However, experimental results provided in Section 7 exhibits that
the supplementary global constraint reasoning can provide a substantial filtering
gain.

6.2 Detectable Precedences Propagation Example
Let us consider a small example (inspired from an example of [18]) with 3 activ-

ities, A, B and C whose domains are illustrated in Figure 5. The corresponding
transition matrix and lower bounds are given in Figure 6.

_ . 1
&
- ]
i _
LB |
L .
_ " _ 1
— I ]
0 5 10 15 20 t

Fig.5: Example of extended Detectable Precedences with transition times. The
extended version updates estc from 11 to 17, while the joint use of transition
time binary constraints with the original unary constraint is not able to make
this deduction.

Lower Bound k=1 k=2
Min Weight Forest 2 5
046 . .
M= (205 Dynamic Programming 2 5
o 130 Min Cost Flow 2 5
Lagrangian Relaxation 2 5
tt(k) 2 5

Fig. 6: Transition times for activities from Figure 5

From this example, the Detectable Precedences algorithm will eventually
build a ©-tree containing activities A and B. Figures 7a and 7b respectively
show the classic and the extended ©-trees.

As one can see, ect™ is larger than ect as it is not agnostic about the transition
time constraints. Furthermore, the update rule of estc also includes the minimal



YP =10
ect = 10

estga =0 estg =1 esta =0 estp =1
pa =25 pB =5 pa =25 pPB =25
YPa=5 YPp=5 YPa=5 YPp=5
ecta =5 ectp =6 ecty =5 ect; =6
na =1 ng =1

(a) Classic O-tree

(b) Extended ©-tree

Fig. 7. Comparison of classic and extended @-tree on the example described in
Figures 5 and 6.

transition time from any activity to C. This leads to the following update of est¢:

tc = t tt in tt;
estc max{esc,ec@—&—??lélg z,c}

=max{11,12+5} =17

We finally obtain an updated est¢, as shown by the red bold bracket in Figure 5.
Notice that the joint use of the constraints given in Equation 1 with the original
unary constraint of [18] would not make this deduction.

7 Evaluation

To evaluate our constraint, we used the OscaR solver [14] and ran instances on
AMD Opteron processors (2.7 GHz). For each considered instance, we used the
3 following filterings for the unary constraint with transition times :

1. Binary constraints? (¢;) given in Equation 1.

2. Binary constraints given in Equation 1 with the Unary global constraint of
18] (0-4).

3. The constraint introduced in this article (¢, 7). Based on our experience,
we slightly changed the propagation loop order : Edge-finding is put in first
position.

Considered benchmarks We constructed instances considering transition times
from famous JobShop benchmarks. For a given benchmark B, in each instance,
we added generated transition times between activities, while ensuring that tri-
angular inequality always hold. From B, we generated new benchmarks B, ;)
inside which the instances are expanded by transition times uniformly picked

2 For efficiency reason, dedicated propagators have been implemented instead of post-
ing reified constraint.



between a% and b% of D, where D is the average duration of all activities in
the original instance.

We generated instances from the well-known Taillard’s instances?. From each
instance, we generated 2 instances for a given pair (a, b), where the following pairs
were used : (50, 100), (50, 150), (50,200), (100,150), (100,200) and (150, 200).
This allowed us to create 960 new instances?.

Comparison of the 3 models

In order to present fair results regarding the benefits that are only provided by
our constraint, we first followed the methodology introduced in [16]. Afterwards,
we made measurements using a static search strategy, as it cannot be influenced
by the additional pruning provided by our constraint.

Potential of the constraint In brief, the approach presented in [16] proposes to
pre-compute a search tree using the filtering that prunes the less - the baseline
propagator - and then to replay this search tree using the different studied fil-
tering procedures. The point is to only measure the time gain provided by the
propagation, by decoupling the gain provided by the search strategy (while still
being able to use dynamic ones) from the one provided by the propagation. We
used ¢, as the baseline filtering, and the SetTimes (st) search strategy to con-
struct the search tree, as this strategy is recognized to provide good performances
in Scheduling. The search tree construction time was limited to 600 seconds. We
then constructed performance profiles as described in [16]. Basically, those are
cumulative distribution functions of a performance metric 7. Here, 7 is the ratio
between the solution time (or number of backtracks) of a target approach (i.e.
Gbtu OF ¢yrr) and that of the baseline (i.e. ¢y). For time (similar for number of
backtracks), the function is defined as:

rotn =g (o e < |

(4)

where M is the set of considered instances while t(replay(st), M U ¢;) and
t(replay(st), M) are respectively the time required to replay the generated search
tree with the studied model (model using ¢;, i.e. ¢pyqy Or ¢yrr) and with the
baseline model.

Figures 8a and 8b respectively provide the profiles for time and backtrack
for all the 960 instances®. Figure Sc provides a “long-term” view of Figure 8a.

From Figure 8a, we can first conclude that ¢y, is clearly worse than ¢, 71
and ¢, from a time perspective. Moreover, Figure 8b shows that ¢y, rarely
offers more pruning than ¢y.

3 Available at http://mistic.heig-vd.ch/taillard /problemes.dir /ordonnancement.dir/
ordonnancement.html.

4 Available at http://becool.info.ucl.ac.be/resources/benchmarks-unary-resource-
transition-times

5 When instances were separated by number of jobs, the profiles had similar shapes.



In comparison, we can see from Figure 8a that for ~ 20% of the instances,
¢urT is about 10 times faster than ¢, and that we solve ~ 35% of the instances
faster (see Fy,,,(1)). Moreover, it offers more pruning for ~ 75% of the instances
(see Figure 8b).

From Figure 8c, we can see that the constraint does not have too much
overhead, as ¢, 7 is at worst about 7.5 times slower than ¢ for ~ 45% percent
of the instances (Fy,;,(7.5) — Fy,.-(1)). It is a bit slower for the remaining
~ 20%, which roughly corresponds to the percentage of instances for which
¢y provides no extra pruning (see Fy, ., (1) in Figure 8b).

% instances
N o
o
S

00 05 1i0 1.5 20 00 0.5 1t0 15 20 00 25 5.‘0T 75 100 12.

(a) 7 is a time ratio. (b) 7 is a backtrack ratio. (¢) “Long-term” profile (7 is
a time ratio).

Fig. 8: Performance profiles for the 960 generated instances.

FEvaluation over a static search strategy We here present results in a more “tra-
ditional” fashion. We compute the best makespan m that can be obtained with
¢p within 600 seconds, using the following binary static search strategy : fixed
variable order, left branch assigns start; to est;, right branch removes est; from
the domain of start;. Then, the time and number of failures required by each
model to find this solution are computed. We filtered out instances for which
the solution was found by ¢, in less than 1 seconds and we computed the time
ratio between ¢, 71 and ¢p. From this perspective, the 10 best and worst results
are reported in tables 1 and 2, respectively. On the 10 best instances, the gains
(the number of failures and time) are significant (sometimes two orders of mag-
nitude). On the 10 worst instances, the times obtained with ¢, 77 are similar to
the results using the classical unary resource (i.e. ¢4, ), while they are at worst
around 6.4 times slower than the simple binary decomposition (i.e. ¢p).

8 Conclusion

In this paper, we proposed to extend classic unary resource propagation algo-
rithms such that they consider transition times. We first stated that a lower
bound of the time taken by transitions between activities from a set {2 is re-
quired to have a tighter bound of ecty,. We described several possible methods



¢uTT ¢b ¢b+u

Time #Fails Time #Fails Time  #Fails
15 15-3 225 50 100-1 2,344 1.12 2,442 117.92 980,330 432.07 911,894
50 15-8 750 50 100-2 6,682 2.11 744 182.27 1,127,272 999.79 1,127,272
20_15-7_300_150_200-2 4,784 0.24 449 17.63 168,466 62.27 168,466
15 15-6_225 50 100-1 2,398 3.90 5,593 187.93 889,079 534.20 602,591
50 20-3 1000 50 150-2 7,387 2.96 1,709 126.61 584,407 829.25 584,407
100_20-4 2000 150 200-1 18,595 11.59 885 340.32 332,412 1225.44 206,470
30 _15-3 450 50 200-1 4,643 1.97 1,178 39.23 226,700 314.34 226,700
15_15-5_ 225 100 150-2 3,320 0.91 2,048 16.40 119,657 63.38 119,657
50 _20-2_1000_50 100-1 6,979 3.79 1,680 63.16 878,162 4.63 1,695
30 15-10_450 100 200-1 5,586 0.74 687 9.24 106,683 41.25 106,683
Table 1: Best time results for ¢, compared to ¢,. The problem is to find the
given makespan m using a binary static search strategy. Time is in seconds.

Instance m

¢u,TT ¢)b ¢b+u

Time #Fails Time #Fails Time #Fails
15 15-10 225 50 200-2 2,804 645.26 546,803 127.38 546,803 572.81 546,803
50 15-9 750 50 200-1 6,699 954.77 164,404 174.63 164,437 1,108.43 164,437
20_20-5_400_100_ 150-2 4,542 213.54 78,782 38.26 78,968 180.20 78,968
20 20-8 400 100 150-2 4,598 147.55 164,546 26.42 164,576 175.69 164,576
15 15-2 225 50 100-2 2,195 178.37 96,821 31.23 96,821 139.84 96,821
20 20-6_400_100_200-1 4,962 11.15 8,708 1.94 8745 11.87 8745
30 _20-8 600 50 200-1 5,312 18.63 6,665 3.15 6,687  19.93 6,687
20 _15-10_300_ 50 200-2 3,571 85.84 61,185 14.24 61,185 65.12 61,185
50 20-8 1000 _100_200-1 9,186 286.61 88,340 46.17 88,340 180.23 88,340
20 15-1 300 100 150-1 3,557 189.37 208,003 29.55 209,885 157.33 209,885
Table 2: Worst time results for ¢, 77 compared to ¢,. The problem is to find the
given makespan m using a binary static search strategy. Time is in seconds.

Instance

to compute these lower bounds. We then proposed to extend the ©-tree and
©-A-tree structures to integrate these lower bounds. These extended structures
can then be used in unary propagation algorithms: OC, DP, NF/NL and EF.
The new obtained propagation procedure has the advantage that it can be used
conjointly with any other constraint and that it is completely independent from
the objective to optimize. We have demonstrated that the additional pruning
achieved by this propagation can dramatically reduce the number of nodes (and
thus the time taken to solve the problem) on a wide range of instances.

Future work would analyze the possibility to integrate tighter incremental
lower bounds in ©-tree and @-A-tree structures. The order and real usefulness
of the propagators (OC, DP, NF/NL, EF) should also be studied in order to
acquire the most efficient fixpoint propagation loop. Finally, we would like to
experiment on a new update rule in ©-tree and @-A-tree to be able to obtain
tighter lower bounds for ecty;.
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