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Abstract. Researchers in machine learning and data mining are increasingly get-
ting used to modeling machine learning and data mining problems as parameter
learning problems over network structures. However, this is not yet the case for
several pattern set mining problems, such as concept learning, rule list learning,
conceptual clustering, and Boolean matrix factorization. In this paper, we propose
a new modeling language that allows modeling these problems. The key idea in
this modeling language is that pattern set mining problems are modeled as dis-
crete parameter learning problems over Boolean circuits. To solve the resulting
optimisation problems, we show that standard optimization techniques from the
constraint programming literature can be used, including mixed integer program-
ming solvers and a local search algorithm. Our experiments on various standard
machine learning datasets demonstrate that this approach, despite its genericity,
permits learning high quality models.

1 Introduction

A revolution is taking place in artificial intelligence, driven to a significant degree by
deep learning toolkits for learning neural networks [26]. As a result, researchers and
practitioners in machine learning and data mining are increasingly getting used to mod-
eling and solving problems using the modeling languages offered in these toolkits. The
key idea underlying these languages is that machine learning amounts to learning the
parameters of a network structure that transforms inputs into predicted outputs.

However powerful these toolkits may be, they rely on a key underlying assumption:
the functions applied to the inputs are continuous and differentiable in the parameters.
This enables the use of gradient descent to identify values for the parameters.

Some problems in data mining and machine learning are however not continuous in
nature. Good examples of such problems can be found in pattern set mining. Examples
of pattern set mining problems include learning rule-based classifiers, conceptual clus-
tering, and Boolean matrix factorization. In each of these problems, the task is not to
find values for a set of continuous parameters, but to identify some discrete patterns.

This raises the question as to whether a generic framework exists that allows for-
malizing and solving these types of problems using a modeling language similar to the
language that deep learning researchers are familiar with. This is the challenge that we
address in this paper.

* The first author is supported by the FRIA-FNRS (Fonds pour la Formation a la Recherche dans
I’Industrie et dans 1’ Agriculture, Belgium).
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Generic modeling languages for pattern mining already exist in the literature. Well-
studied is the constraint programming for pattern mining (CP4PM) framework [13,25].
However, this framework has two weaknesses. First, the modeling language is different
from the network-based modeling language used in deep learning toolkits: pattern min-
ing problems are formalized by modeling these problems using Boolean variables and
constraints on these variables. Second, most of the studies on CP4PM focus on pattern
mining instead of pattern set mining [14]. There is an important difference between
pattern mining and pattern set mining. In pattern mining, one is interested in finding
all patterns occurring in a dataset that satisfy a given set of constraints. The most well-
known example of such a constraint is the requirement that a pattern is frequent. In
pattern set mining, however, we are not interested in finding all patterns, but we are in-
terested in finding a small set of patterns that together solve a well-defined data mining
problem well, such as a classification task. Given the large number of frequent patterns
that can typically be found in many datasets, in recent years, it has been argued that
pattern set mining is the more relevant problem.

Only a limited number of studies have explored the extension of CP4PM to pat-
tern set mining problems [14,12]. In these studies, a modeling language was proposed
in which pattern set mining problems are formalized as constraint optimization prob-
lems. A solution strategy was proposed based on the use of a constraint programming
solver. Unfortunately, this approach could, in practice, only be applied to relatively
small datasets. Moreover, the modeling language proposed was rather different than the
one currently used in machine learning toolkits.

We aim to address these weaknesses in this work. In this paper, we propose a new
framework for modeling pattern set mining problems. Compared to existing frame-
works, this framework has the following advantages:

— the modeling language that we propose is inspired by that of frameworks for deep
learning: in our language, we represent learning problems as parameter learning
problems on networks; however, instead of continuous functions, in the internal
nodes of our networks we use Boolean operators, effectively turning the networks
into Boolean circuits;

— the framework supports the generic use of a number of different solvers. In partic-
ular, in this work we will show how Mixed Integer Programming (MIP) and local
search algorithms can be used to solve pattern set mining problems in a generic
manner;

— as a consequence of the support of different solvers, the framework allows for find-
ing larger pattern sets on larger datasets.

We introduce a domain specific language to ease the description of the network, its
parameters, and the loss function to be computed on the data. Our experiments demon-
strate the practicability and flexibility on standard benchmarks.

2 Related Work

A number of different modeling languages for pattern mining problems have already
been proposed in the literature.
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An important class of methods is based on the use of constraints to model pattern
mining problems. The key idea in these approaches is to model a data mining problem as
a Constraint satisfaction problem (CSP) and use a SAT-, CP- or MIP-solver for solving
it. Several data mining tasks were studied, but most results were obtained for itemset
mining [6,13,18,25] and sequence mining [3,16,21]. However, these approaches are
solver- and task-dependent, and do not solve pattern set mining problems.

Most related to this work is the work of De Raedt [8] and Guns et al. [14] on mod-
eling pattern set mining problems as constraint satisfaction or optimization problems.
Contrary to these earlier works the framework that we propose is solver independent
and uses a modeling language familiar to machine learning researchers.

A modeling language for pattern mining that is solver independent is the MiningZ-
inc [11] language. However, it does not address pattern set mining problems either.

The first modeling languages that were proposed in the data mining literature are
those that use an SQL-like notation [19]. Also, these languages did not study pattern set
mining problems and do not use a notation based on networks.

3 Pattern Set Mining Problems

In this section we will introduce the pattern set mining problems that are the focus of
this work. We limit our attention to Boolean data that may or may not be supervised in
nature. Let Z = {1,...,m} be the sets of items (features) and 7 = {1,...,n} be the
set of transaction (observation) identifiers. An unsupervised database can equivalently
be seenasaset D = {(¢,7}) | t € T, T, C I} or as a matrix such that Dy; € {0,1}
where t € T and i € Z. In a supervised database, we associate with every transaction a
Boolean label, i.e. D = {(¢,T3,a:) |t € T, T: CZ,a: € {0,1}}.

Example 1. As an example consider the database in Fig. la. Ignoring the class la-
bel, this database can be represented as a set D = {(1,{1,2,3,5}),(2,{1,2,4,5}),

(3,{1,3,4,5}),(4,{1,3,4})}.

Several pattern set mining problems have been proposed on such Boolean data. We
will first consider supervised settings. In Concept Learning [1] the aim is to discover
a set of itemsets that characterizes the positive examples in a supervised dataset as well
as possible.

Definition 1 (Concept Learning). Given a Boolean supervised dataset D, find a set of
itemsets C' C 2%, also referred to as concepts, such that |C| = k and error(Uec cover(I))
is minimal.
Here, we define the cover and the error as follows:
- cover(I) ={t | (t,T;) € D AT C T;}, the set of transactions that contain a given
itemset;

—error(T) ={teT |(aa=1At¢€T)V(e =0At €T)}
examples not characterized correctly.

, the number of

Example 2. Consider the concepts C' = {{1,2,3},{3,4},{4,5}}; these are high-
lighted in Fig. 1a. Observation 2 is misclassified, so the error is 1.



4 John O.R. Aoga, Siegfried Nijssen, and Pierre Schaus

21 %2 3 a4 15 i1 12 i3 44

31| 1] 1] {ia)  {ia}

sl1lol| 1| 11|+ &/\,\ il

4 | 1|0 1]1]|0]+ 410|010 / \ / \
(a) D1 (b) D2 (c) Tree

Fig. 1: Itemset databases showing (a) itemsets and its covers and (b) tiles. (¢) An example of
itemset-based tree.

In Rule Learning [5,20], we treat the patterns as rules that can also predict a
negative class label. Restricting ourselves to the Boolean context, we can define the
problem of learning Rule Lists as follows.

Definition 2 (Rule List Learning). Given a Boolean supervised dataset D, find a list
of k rules R = (I(") — Z(T)>I:=1, where I\") is an itemset and 1) € {0,1} is a class
label, such that error(cover(R)) is minimal, and I*) = (), i.e., the kth rule serves as
a default rule.

Here, we define the cover of a rule list as the set of transactions for which the rule list
predicts the positive class label, cover(R) = {t € T | 3(I" — 1) e R : IM C
Ty A3 <r:(I0) 510y e RATC) C T}

Example 3. For the database of our running example (eg. 1), the rule list <({1, 2,3} —
1),({4,5} = 0),({3,4} — 1),(? — 1)) would have an error of 1: example 3 would
be misclassified, as the first rule that applies to this example is the rule {4,5} — 0).

Itemset-based Decision Trees [10] are a generalization of rule lists. Essentially, they
are decision trees in which each node tests for the presence of an itemset. A transaction
(observation) will be put in the left-hand branch of an internal node v if the itemset / ()
is present, and in the right-hand branch if the itemset is absent. A complete decision
tree is a tree that is filled completely till the lowest level.

Definition 3 (Learning Pattern-based Decision Trees). Given a Boolean supervised
dataset D, find a set of k itemsets {1 (r) }, corresponding to internal nodes of a complete
decision tree, and labels in {0, 1} for each leaf of the tree, such that the error of the
predictions at the leaves of the tree is minimal.

Example 4. Fig. 1c is an example of a pattern-based tree obtained from D; with 2 as
error because examples 3 & 4 are misclassified.

We will consider a number of pattern set mining settings on unsupervised data next.
Conceptual Clustering [9] aims to cluster examples while also finding descriptions
for these clusters. One possible definition of this problem is the following.
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Definition 4 (Conceptual Clustering). Given a Boolean unsupervised dataset D, find
k itemsets C, such that |{t € T : |{I € C : I C T;}| # 1}| is minimal; hence, the
number of transactions of the given dataset not covered by exactly one itemset is
minimal.

Example 5. In our running example (eg. 1) each itemset now describes a cluster (the
target attribute of D; is not taken into account). These clusters cover respectively trans-
actions {1}, {3,4} and {2, 3}; the {3} is an overlapping transaction.

Boolean matrix factorization [17] aims to describe the 1s in a database using two
Boolean matrices, which can be seen as matrices describing itemsets and their occur-
rences.

Definition 5 (Boolean Matrix Factorization). Given a Boolean database D, find a
Boolean matrix A of size n X k and a Boolean matrix B of size k X m, such that
error(A o B, D) is minimal.

Here o is the Boolean matrix product, in which the matrix product is redefined such that
141 =1, and error is a function that calculates the number of cells in the two given
matrices that mismatch.

Example 6. Fig.1b shows an example of two rectangles of which the rows and columns
are identified using Boolean matrices A and B. The error is 2: cells (1,4) and (4, 4) are
not described correctly in this matrix decomposition.

In the next section, we show how these problems can be reformulated as parameter
learning problems over Boolean circuits.

4 Reformulating Pattern Set Mining as Parameter Learning in
Logical Circuits

In this section we will define the problem of parameter learning in Boolean circuits;
subsequently, we will show that the learning problems identified in the previous section
can all be cast as such parameter learning problems. We first define Boolean circuits.

Definition 6. A Boolean circuit C is a directed acyclic graph G(V, E) in which each
node v € V of in-degree zero represents an input variable, only one node has an out-
degree of zero, and each internal node represents a logical gate and is labeled with an
operator from the set {\,V,—}.

Logical circuits can be seen as the graphical representation of a Boolean formula. Each
internal node v with label A corresponds to an expression v = v; A - -+ A v, where
v1, ..., U, are v’s children. For any assignment to the input variables, the Boolean cir-
cuit calculates a Boolean value for the output variable. Hence, we can see the Boolean
circuit as a function from the Boolean input variables to {0, 1}.

We can define the parameter learning problem for a given Boolean circuit as follows.
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Definition 7. Given (1) a Boolean circuit C, (2) a partition of the input variables into
two sets X and W, where W represents the parameters of the circuit, and (3) a Boolean
supervised dataset D over | X | items, the parameter learning problem is the problem of
finding an assignment to the variables W such that

Y e T) - al (1)

(t,Tt,ar)€D

is minimized, i.e., C fits a; well. Here we assume that in passing Ty as a parameter to
C, we set all variables in X to True that are included in T.

Below, we will show that the pattern set mining problems presented earlier can be rep-
resented as parameter learning problems for Boolean circuits, for well chosen architec-
tures for C' and, in some cases, representations of the input data.

However, before doing so, we will introduce some additional notation. We found
that modeling the pattern set mining problems at the level of basic Boolean circuits is
cumbersome. To simplify our modeling task, we will use an approach that is common
in Boolean circuit design: we will add additional gates to our notation that can be seen
as a shorthand notation for underlying, larger circuits.

Our first additional gate is @, which operates on two lists of inputs w = w1, ..., w,
(each w; corresponding to a variable in W) and v = vy, .. ., v, (each v; corresponding
to a variable in V'), and which can be understood as a shorthand notation for

Q(w,v) = (w1 Avy) V (ws Avg) V-V (wy A vy).

The idea is that the parameters wy, . . . , w,, indicate which of the inputs of the V should
be taken into account.
Similarly, we define ® as a shorthand notation for

@(w,v) = (—|w1 \Y 1)1) N (_'U)Q \Y UQ) VANCERWAN (_‘wn V Un),

where the parameters wy, . . . , w,, indicate which of the inputs of the A should be taken
into account.

In this paper, we will use a graphical notation for Boolean circuits. We will illustrate
this notation first on the problem of learning rule lists.

Fig. 2 (left) shows the Boolean circuit for learning rule lists using the shorthand
notation, for a dataset with 3 items and a rule list of at most two rules, plus the default
rule. In the shorthand notation, we use an A symbol (respectively, V symbol) with dotted
incoming edges to represent the @® (respectively, @) gate. The dotted edges indicate
that we have a parameter for each such edge, indicating whether or not to take into
account that edge. Hence, in this diagram the input variables of the circuit representing
parameters are not explicitly included. We can distinguish three types of layers in this
circuit:

Layer 1 represents the problem of selecting which items are included in each rule; the
output nodes of this layer can be seen as indicators for the absence or presence of a
rule in a data instance;
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Layer 3 represents the problem of selecting the class label for the two rules, as well as
the class label for the default rule;

Layer 2 expresses the order dependencies between the rules; it ensures that the second
rule in the rule list will only be used for prediction if the first rule does not match,
and the default rule will only be used if the previous two rules did not match.

Fig. 2 (right) show the full circuit representation with explicit binary decision variables
encoding the rules to be discovered that can be retrieved as follows: rule 1is {i | ¢ €
(1,3 AIY =1} 5 LO e 2is {i | i € {1,...,3) AT® =1} - L® and
the last (default rule) is ) — L(). The inputs of the circuit are X = {iy,4o,43}. The
variables 1(1) R} §2), LM . L) are shared among all the transactions to impose that
all transactions are classified with a unique rule list.

Similarly, for the other problems introduced in section 3, we can introduce Boolean

circuits to formalize these mining and learning problems. The architecture of these cir-
cuits is illustrated in Figure 3, for small examples.
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Fig. 2: Architecture of Boolean circuit for rule learning with m = 3 items and £ = 3 rule list size:
a) general representation b) full representation with decision variables (dotted arrows represent
optional decisions and solid arrows mandatory decisions).
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(b) Learning Itemset-based Decision Trees

i1 B3t B

(d) Boolean Matrix Factorisation

(c) Conceptual Clustering

Fig. 3: Architectures of Boolean circuits for the other studied problems (dotted arrows represent
optional decisions and solid arrows mandatory decisions).

For concept learning and itemset-based decision trees the data used for training is
identical to that used for rule list learning. The difference between concept learning and
rule list learning is that in concept learning the head of the rules is fixed and there is no
order between the rules. The decision tree learning problem illustrated is for decision
trees composed of 3 itemsets: one for the root and one for each of the children of the
root. In the Boolean circuit every child of the root corresponds to one of the leaves
of the decision tree. The extension towards perfect trees of larger depth is relatively
straightforward.

Conceptual clustering in an unsupervised problem setting; however, in our param-
eter learning setting we need to provide a label for every training instance. We address
this by giving every instance in the training data the label 1. The idea in this circuit is
that we predict 1 for an example iff there is exactly one itemset that matches it; if no
itemset, or two or more itemsets match it, we predict 0. As a result, the error score for
this circuit corresponds to counting the number of examples not exactly in one cluster.
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Boolean matrix factorization is an unsupervised setting as well. The input data
that we give to the Boolean circuit is different here. Given the original data D;;, we
create a new dataset as follows:

{(() (1.}, D0) | te T ieT),

that is, we create a dataset in which each entry of the original matrix is an example;
every new example consists of two items: one representing the original item, the other
the original transaction identifier. In the lowest layer of the Boolean circuit, both trans-
action sets and itemsets are identified; the layer on top represents the Boolean matrix
product. It can be shown that this model is equivalent to the original learning problem
a well.

5 Generic Solving Framework

The question arises now how to solve these parameter learning problems. The benefit
of our approach is that it allows for the use of alternative solvers. In this paper, we will
consider two such approaches: one is the use of a greedy algorithm; the other is the use
of Mixed Integer Programming (MIP) solvers.

5.1 Solving using Greedy algorithm

Greedy algorithms are among the most scalable algorithms for the pattern set mining
algorithms studied in this work. Indeed, for rule learning tasks these are the most com-
mon type of algorithm, as in practice, the solution found by such algorithms is already
of decent quality. The parameters of the Boolean circuit that minimize the error (1) can
also be found greedily.

Algorithm 1 shows a greedy algorithm. This algorithm receives the Boolean circuit
(together with its partition of inputs into two sets W and X') and the database D. We
will represent the values of the parameters by listing the subset of parameters P =
{1,2,...,|W]|} that take the value 1. By abuse of notation, we hence treat a vector of
assignments to the variables in W as a subset of parameters P. The algorithm starts
with an empty set of parameters W and then iteratively identifies the parameter for
which a flip from the value 0 to the value 1 minimizes the error (Line 5). Once a local
optimal parameter is found, W is updated accordingly in line 6. The process repeated
until either (i) a solution better than I/ cannot be found (line 7) or (ii) all variables have
been fixed to the value 1, or (iii) the minimum error is 0.

The set P represents all the dotted edges in our graphical representation of the
learning problems. An empty list W indicates that no edge is selected. Taking a decision
(include or not) corresponds to flipping the parameter value.

While we could apply this greedy algorithm on all parameters of the circuit, we
perform an optimization when the root node of the circuit consists of a @ node, such as
in rule learning and itemset-based decision trees, and for every transaction only one
of the children takes the value True. For such circuits it can be shown that the optimal
choice for the children of the root can easily be calculated from the choices below those
children. Hence, we do not perform a greedy search over this set of children.
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Algorithm 1: Greedy(C, D)

1 Method error (W: Assignment to the parameters, C': Logical Circuit, D: list of
Transactions )
2 L return Z(t,Tt,at)eD |C(W,T) — aq|

3 W10 minErr < error(W, D)
4 do
w” < argmin error(W U {i}, C, D)
PEP\W
iferror((W U{w"}, C, D) < minErr then W <~ W U {w*}  >Addw” 10 W
else break;
while P \ W # () A minErr > 0; > Stop if no more decision or minErr = 0
return W

wn

e ® 9 o

For some problems, such as conceptual clustering and Boolean matrix factoriza-
tion, we found that it can be beneficial to start from an assignment that puts all variables
in W at the value 1. This can be emulated by putting a — node between every parameter
and the nodes that it is connected to.

5.2 Solving using MIP

The key idea in this approach is to map the parameter learning problem to an optimiza-
tion problem defined on integer variables and linear constraints. An additional integer
variable is introduced for each node in the circuit and each gate is modeled using a set
of linear constraints as follows:

— if anode y is an A-gate of x; nodes:

y<uz; Viel[lm]
Y=x1 Ao N ANy =< y > Xz; — (m—1)
y=>0

— if anode y is an V-gate of x; nodes:

y>xz; Viel[l,m]
y=z1VraV---Vz, =< y< X,
y<1

— finally, if a node y is a —-gate of x node:

We make a copy of the circuit for every example in the training data, fixing the cor-
responding inputs of the circuit to the values in the training example; the parameters
are variables that the MIP solver will search over. For every training example, we will
include the output v of the circuit in the optimization criterion, using v if the expected
output is 0 and (1 — v) if the expected output is 1. We minimize this error.
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Algorithm 2: DSL to solve a rule learning problem with the architecture of
Fig.2a and D in MIP and Greedy algorithm

> Building the network

L < InputLayer(m = 3)

Ly < AndSelectionLayer(L1,k = 3)

L3 + NotLayer(Ls)

L4 < Layer(L2[1], And(Ls[1], L2[2]), And(Ls[1], L3[2]))
Ls < OrSelectionLayer(La)

N <+ Ls.network()

> Load inputs and parameters

X + getDB(D) y <+ getAtir(D) ¢« Ls[0]

obj «+1—y.g—(1—y)(1-79) > Objective function
> Defining the procedures

greedy < X into N using Greedy.solver minimizing obj
stats < greedy.run()

mip < X into N using M I P.solver minimizing obj

stats < mip.run()

DI RN B 7. T VR SR

P T Y
N OB W N =S

Note that this gives a generic approach for solving the mining and learning problems
discussed earlier using MIP solvers. There is already a literature on modeling some of
these individual problems in MIP (see [4,22,23,24,27]; our approach provides a more
general approach to modeling such problems.

6 Unified Modeling and Solving Language

In our vision, creating parameter learning problems for Boolean circuits can be seen as
a programming task. The main benefit of our framework is that its modeling language
is very similar to that of Deep Learning toolkits, and hence familiar to machine learning
researchers.

Algorithm 2 is an example of an implementation of the rule list learning problem
based on the architecture of Fig. 2a. From line 2 to 7 the Boolean circuit is defined by
using macro-functions such as AndSelectionLayer which represents all the operations
of Layer 1 in Fig. 2b. At line 10, we define the error function and at lines 12 and 14 the
different solvers, which are launched in lines 13 and 15.

7 Learning Classifiers based on Soft Rules

While we focused our modeling framework on Boolean parameters only, of interest can
also be combinations of Boolean parameters with other types of parameters. We will
study one first possible such combination here and will leave other combinations as
future work.

In traditional learning, the interpretation of the conditions in a rule is typically con-
Jjunctive: all conditions in a rule need to be met. However, this conjunctive interpretation
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Fig. 4: Learning soft rule lists

of rules can also be considered a limitation. More freedom would be allowed in rule-
based classifiers in which we require to match a certain number of conditions, but not
necessarily all.

We can model such problems by adding a parameterized soft gate to our network.
The new parameterized soft gate requires that at least a inputs should be true, where
« is also a parameter that needs to be learned. More formally, this gate operates on
three inputs, and has the following semantics: S(v,w,a) = >, v;w; > «, where
v1,..., Uy, indicate Boolean input nodes, and wy, ..., w, are Boolean indicators rep-
resenting whether or not to take into account the ith input. Note that (v, w,1) =
@(v, w): the gate generalizes the ©-gate. Furthermore, S(v, w,n) = v1 A -+ A vy,

We can use this gate to define a rule learning problem in which each rule does
specify not only conditions, but also the minimum number of conditions that need to
be satisfied in order for the rule to apply. This is illustrated in Figure 4. This model
has a higher level of expressivity than traditional rule learning models: by fixing the
parameters « to a sufficiently high level, we can still enforce that all conditions need to
be satisfied for a rule to apply.

We can learn the parameters of such gates both using MIP and using greedy algo-
rithms. In MIP, we exploit the fact that v;w; = v; A w;. Let u; = v; A w;; then we
implement the gate by first calculating the ;s using the representation for A discussed
earlier and then using these u;s as follows:

_ >t ui—a+(l-yn >0
y=0(wae) = {Z?zlui—a—yn—i—l <0.
Note that also here we copy the circuit for each example in the data; the ;s are calcu-
lated for each example separately. However, the parameters « and w; are shared among
all examples.
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8 Experiments

In this section, we evaluate our framework from three perspectives: (i) the predictive
power of the classifiers learned compared to other classifiers, (ii) the sensitivity of the
pattern sets identified w.r.t. the variation of parameters (like k),(iii) the efficiency of the
framework (using CPU time). All experiments were run in the JVM with maximum
memory set to 8GB on PCs with Intel Core i5 64bit processor (2.7GHz) and 16GB of
RAM running MAC OS 10.13.3. Execution time is limited to one hour.

Datasets and existing classifiers. We use data from the CP4IM! repository. Statistics
of these datasets are reported in Table 1a. We compare with the following methods: (i)
Popular tree-based and neural network-based classifiers such as Random Forests (RF),
decision trees (C4.5) and neural networks (NN) from the scikit-learn library (using
default settings); (ii) a rule-based learner: Probabilistic Rule List (PRL) [2] and a k-
pattern set miner [14,12] (KPATT) for the concept learning task, in which the concept
learning problem is solved as a global optimization problem in a CP solver.

We denote our approaches by X4Y z, where X € {MIP, G} is the solving strategy
and can be either MIP or G(greedy), Y € {CL, RL, PDT, BMF, CC } represents the
pattern set mining problem solved and can be CL (concept learning), RL (rule learn-
ing), PDT (Pattern-based Decision Trees), BMF (Boolean Matrix factorization) or CC
(conceptual clustering). We use z € {+«, —a} to indicate whether or not the soft gates
are used (see sect. 7).

Comparison of Model Quality. Table 1e) shows the average accuracy evaluated using
stratified 10-fold cross-validation on test data. Note that in some cases, within the time
allocated the MIP solver could not prove optimality. We use the best pattern set found
within the allocated amount of time. In these experiments, the number of patterns is
fixed arbitrarily to k = 5.

RF and Neural Networks perform better than the rule-based methods, but our intro-
duction of soft rules (sect. 7) seems to improve the accuracy of rule-based methods in
most cases over both the training and the test tests. The performance on test data of the
greedy algorithm is sometimes worse and sometimes better than that of the MIP-based
algorithm, although on concept learning the performance of the greedy algorithm is not
satisfactory. For many cases where optimality could not be proven within the allocated
time, the optimality gap is less than 10%.

Running time comparison. The greedy approach is generally very efficient and outputs
results in a few seconds, so we only report the execution time of the MIP approach
in Table 1. As one can see, in many cases, the timeout is reached with a gap from
the optimum smaller than 10%, with a few exceptions (41%, 29%). Our approaches
outperform KPATT on small databases and on (relatively) large databases KPATT fails
to find a solution within the allocated amount of time.

MIP approaches are highly dependent on the number of variables and the number
of constraints, which are O(k x |T| x |Z|) and O(k x |T| x (|Z| + k)) respectively.
However, the MIP pre-solving is able to drastically reduce the number of variables and

! https://dtai.cs kuleuven.be/CP4IM/datasets/
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Table 1: Experiments for pattern set mining problems over several datasets with k = 5 (“-”
means the process stopped before a solution was found, either due to a out of memory/timeout
exception in the pre-solving step of the MIP solver, or before the CP solver used in KPATT found
a solution).

methods Audi. Aust. HeCl. Hepa. KrKp. Lymp. Mush. PrTu. Soyb. Spli. TTT. Vote Zoo

a) Dataset Features

|71 216 653 296 137 3196 148 8124 336 630 3190 958 435 101
WeTlee=1}l 026 055 054 081 052 055 052 024 015 052 065 061 041
|| 148 125 95 68 74 68 119 31 50 287 27 48 36

b) Accuracies over training sets

MIP4CL-« 1.0 092 0.89 0.98 087 097 0.55 0.89 0.97 - 090 098 1.0
MIP4CL+a 1.0 091 1.0 1.0 0.93 1.0 1.0 0.91 1.0 085 0.77 1.0 1.0

G4CL 073 045 046 0.19 047 046 049 076 086 048 035 037 059
KPATT 1.0 - - - - - - 089 097 - 0.82 - 1.0
MIP4RL-« 1.0 - - 1.0 - 0.95 - 089 0.96 - 0.81 098 1.0
MIP4RL+a 1.0 - 0.97 1.0 - 1.0 1.0 0.87  0.98 - 0.83 1.0 1.0
G4RL 098 0.86 083 0.89 094 0.86 098 084 0.86 084 070 0.96 1.0
MIP4PDT-o« 1.0 - 0.89 1.0 - 0.96 - 089 094 - - 0.97 1.0
MIP4PDT+a 1.0 - 1.0 1.0 - 1.0 1.0 - 0.99 - - 1.0 1.0
G4PDT 099 0.86 082 0.89 094 0.88 1.0 084 0.86 084 076 0.96 1.0
¢) Gap (%) for MIP over training sets
MIP4CL-« * 008 012 002 012 003 041 0.07  0.03 - 0.11  0.02 *
MIP4CL+« * 010 * * 0.07 * * 0.05 * 0.16 0.29 * *
MIP4RL-« * - - ® - 0.05 - 0.08  0.05 - 024 0.02 *
MIP4RL+« * - 0.03 * - * * 0.10  0.02 - 0.20 * *
MIP4PDT-ac  * - 0.12 * - 0.04 - 0.08  0.06 - - 0.03 *
MIP4PDT+a  * - * * - * * - 0.01 - - * *
d) Running time (in second) - TO= Timeout

MIP4CL-a  26.09 TO TO TO TO TO TO TO TO - TO TO 1.65
MIP4CL+a 5.81 TO 2682.90 1.99 TO 250 251 TO 915.09 T TO 17.32  0.66
KPATT 20 - - - - - - TO 173030 - TO - 3.29
MIP4RL-a 4545 - - 31.65 - TO - TO TO - TO TO 1.70
MIP4RL+a 773 - TO 9.00 - 572 1103.95 TO TO - TO 146.90 0.69
MIP4PDT-o« 51.61 - TO 3038.61 - TO - TO TO - - TO 226
MIP4PDT+a 1225 - 75720 9.27 - 990 TO - TO - - 1265.56 1.05
MIP4CC-ac  42.04 244.73 46.53  7.58 1072.34 191 - 16.77 123.81 - 15356 571 257
MIP4CC+a 11.63 334 9.86 227 504.26 232 1118.64 7.26 1.62 443.68 22.56 7.38  0.60
MIP4BMF-a« - - - 556.20 - 69797 - 1454.71 - - - - 127.15
MIP4BMF+a - - - 542.93 - 65.20 - 1446.05 - - - - 12320

e) Accuracies over test sets

MIPACL-a«  0.87 0.85 0.77  0.79 086 0.69 0.5 0.83 0.98 - 094 098 1.0
MIP4CL+a 091 0.76 070  0.79 089 0.75 1.0 0.8 089 082 075 093 1.0

G4CL 0.77 048 042 021 051 038 045 0.71 084 047 034 049 0.64
MIP4RL-ac  0.87 - - 0.79 - 0.62 - 0.89 0.95 - 0.86 1.0 1.0
MIP4RL+a  0.87 - 0.8 0.93 - 0.62 1.0 0.8 0.89 - 0.81 098 1.0
G4RL 1.0 094 0.65 0.79 095 081 0.99 0.76 084 085 072 0.96 1.0
MIP4PDT-ac  0.83 - 0.8 0.86 - 0.75 - 0.77 0.92 - - 0.95 1.0
MIP4PDT+a 0.91 - 083 0.86 - 0.69 1.0 - 0.95 - - 0.93 1.0
G4PDT 1.0 094 0.65 0.79 095 0.81 1.0 0.76 084 0.85 0.77 0.96 1.0
PRL 087 - - 0.71 - 0.62 - 0.26 0.83 - - 0.64 1.0
C4.5 094 0.81 0.75 0.72 098 0.84 0.97 0.75 091 093 082 095 097
RF 095 0.83 076 0.82 096 085 0.97 079 095 094 087 096 1.0

NN 1.0 091 087 079 09 1.0 099 0.71 0.84 095 079 098 1.0
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Fig. 5: Sensitivity to the parameter k of our approches over Hepa dataset (time limit = 600s) .

constraints in some cases. For example, the initial numbers of variables (424, 945) and
constraints (710, 632) in the Audi dataset were reduced by more than 97%.

Sensitivity to the parameter k. Figure 5 shows the accuracy on training and test sets,
the gap, and the execution time by varying k& for the Hepa database; results on other
datasets are similar. As can be seen, increasing k improves the accuracy on the training
set. On the test set the outcome depends strongly either on whether optimality has been
proven or not (as evidenced by the gap-plot) or overfitting on the training set.

9 Conclusion

Motivated and inspired by the high level modeling language offered by deep learning
frameworks, this work proposed a unified modeling framework for various k-pattern
set mining problems (concept learning, rule list learning, pattern-based decision trees,
conceptual clustering and Boolean matrix factorization). The modeling language is in-
dependent from the optimization technology. We have shown that possible extensions
of the language are possible and yield promising results, such as the soft gates. We have
shown experimentally that despite the genericity of our framework, the performance
of the approach is competitive to that of existing traditional learning approaches, and
outperforms an earlier CP-based approach for pattern set mining.

Many future studies are possible. First, alternative optimization approaches are of
interest, such as based on meta-heuristics (such as large neighborhood search) and
gradient-based approaches, in particular those for learning binarized neural networks [15].
Furthermore, other links to deep learning can be explored further, for instance, in mixed
networks that combine discrete and continuous components. In this work we did not re-
strict the form of Boolean circuit used; by adding restrictions on the form of the Boolean
circuit, such as that the Boolean circuit is in decomposable negation normal form [7], it
may be possible to build more optimized algorithms.
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