Learning Optimal Decision Trees using
Constraint Programming

Hélene Verhaeghe!, Siegfried Nijssen', Gilles Pesant?, Claude-Guy Quimper?,
and Pierre Schaus!

'UCLouvain, ICTEAM, Place Sainte Barbe 2, 1348 Louvain-la-Neuve, Belgium,
{firstname.lastname}@uclouvain.be
2Polytechnique Montréal, Montréal, Canada, gilles.pesant@polymtl.ca
3Université Laval, Québec, Canada, claude-guy.quimper@ift.ulaval.ca

Abstract. Decision trees are among the most popular classification
models in machine learning. Traditionally, they are learned using greedy
algorithms. However, such algorithms pose several disadvantages: it is
difficult to limit the size of the decision trees while maintaining a good
classification accuracy, and it is hard to impose additional constraints on
the models that are learned. For these reasons, there has been a recent
interest in exact and flexible algorithms for learning decision trees. In
this paper, we introduce a new approach to learn decision trees using
constraint programming. Compared to earlier approaches, we show that
our approach obtains better performance, while still being sufficiently
flexible to allow for the inclusion of constraints. Our approach builds
on three key building blocks: (1) the use of AND/OR search, (2) the
use of caching, (3) the use of the CoverSize global constraint proposed
recently for the problem of itemset mining. This allows our constraint
programming approach to deal in a much more efficient way with the
decompositions in the learning problem.

Keywords: Decision Tree, CoverSize, AND/OR search tree

1 Introduction

Decision trees are popular classification models in machine learning. Benefits of
decision trees include that they are relatively easy to interpret and that they
provide good classification performance on many datasets.

Several methods have been proposed in the literature for learning decision
trees. The greedy methods are the most popular ones [6, 15, 16]. These methods
recursively partition a dataset into two subsets based on a greedily selected
attribute until some stopping criterion is reach (such as a minimum number
of examples in the leaf, or a unique class label in these examples). While in
practice these methods obtain a good prediction accuracy for many types of
data, unfortunately, they provide little guarantees. As a result, the trees learned
using these methods may be unnecessarily complex, may be less accurate than
possible, and it is hard to impose additional constraints on the trees, such as on
the fairness of their predictions.

2 Hélene Verhaeghe et al.

To address these weaknesses, researchers have studied the inference of optimal
decision trees under constraints [1,3,4,12-14,19]'. These approaches ensure
that under well-defined constraints and optimization criteria, an optimal tree is
found. Experiments conducted in earlier work [3, 13, 14] have shown that optimal
decision trees computed with these exact methods can indeed obtain better
classification performance while respecting constraints.

A problem that is solved by many of these earlier approaches [3,13,14,19]
is the following. Given a dataset in which all examples are binary; the problem
is to find the decision tree that optimizes prediction accuracy, while enforcing a
constraint on the depth of the decision tree.

The key ideas behind this constraint are that it limits the complexity of the
decision tree, hence making the predictions of the tree easier to interpret while
preventing over-fitting.

Several papers have studied the addition of other constraints to these ap-
proaches, including support constraints on the leafs of the tree [3, 14], on fairness
[1], or on the preservation of privacy by these trees [14].

The main challenge that these methods need to address is that the problem
of inducing decision trees under constraints is NP-hard [10]. Hence, approaches
for this problem need to perform some form of exhaustive search through the
space of possible trees. To explore this search space, earlier approaches have
been built on existing technologies: Mixed Integer Programming (MIP) solvers,
satisfiability (SAT) solvers, or itemset mining algorithms developed in the data
mining literature.

This paper proposes a new, more scalable approach based on Constraint
Programming (CP) for learning decision trees. Our approach combines these
key ideas:

— the use of branch-and-bound in a CP solver to eliminate parts of the search
space in which no solutions can be found;

— the use of the COVERSIZE global constraint, originally developed for itemset
mining in CP, to calculate efficiently in which leafs examples end up [18];

— the use of an AND/OR search tree to exploit the fact that the optimal
left-hand and right-hand subtrees of a node in a decision tree can be found
independently from each other [8];

— the use of caching to store optimal decision trees for itemsets that have been
considered in the past [13].

We will show that the combination of these different ideas leads to a model that
is more efficient than other approaches proposed in the literature.

The paper is organized as follows. Section 2 presents the state of the art,
followed by a formal definition of the problem in Section 3. Our CP model and
CP search are detailed in Section 4. Finally Section 5 presents empirical results
about our algorithm.

! The problem of embedding a decision tree as a constraint into a CP model has been
studied in [5].

Learning Optimal Decision Trees using Constraint Programming 3

2 Related Work

Most related to this work are the alternative approaches for finding optimal
decision trees. There is a number of alternative definitions for the problem of
finding optimal decision trees, each using different constraints and optimization
criteria.

The most popular setting studied in recent papers [1,3,19] is the one in
which a decision tree of bounded depth is learned by maximizing the accuracy
on a given training dataset. The limit on depth allows to model the problem as
a MIP problem with a fixed number of variables. Constraints can be added, as
long as they are linear; this includes constraints on fairness [1] or on the number
of examples in the leafs [3]. We will use this problem setting in this work.

A slightly different setting was studied in the DL8 algorithm [14]. DL8 builds
on top of itemset mining algorithms to find decision tree paths, and uses dynamic
programming to build a decision tree from these paths. Effectively, it uses item-
sets as the key of a caching data structure. As a consequence of the use of itemset
mining, DL8 does not require a specific constraint on the depth of the decision
tree; it uses a minimum support constraint to limit the size of the search space.
This approach can be used on constraints that are not linear in nature. From
this approach, we will adapt its link to itemset mining, and its use of caching.

To the best of our knowledge, CP has not yet been used in the setting where
accuracy is optimized. Two earlier studies [4,12] did however study the setting
in which one finds the smallest decision tree consistent with a training dataset
(i.e., the error of the decision tree has to be zero). As training data can be noisy
and inconsistent, and hence finding a tree of zero error can be either impossible
or undesirable, this setting is less common in the machine learning literature.

Similar to DL8, we will rely in this work on the fact that decision tree learn-
ing problems have many decompositions. We will exploit these using AND/OR
search, which was studied extensively by Dechter et al. [§]. AND/OR search is
not common in CP systems yet, and has not been used in decision tree learning
yet; it has recently been exploited in the context of stochastic CP however [2].

3 Technical Background

3.1 Definition of the Problem

We restrict our attention to binary data. Continuous data can be discretized and
binarized as proposed by Breiman et al. [6]; this observation was also exploited
in earlier studies [13,19].

We represent our data using an n X m binary matrix D. D; represents the ith
row of the data, or, following itemset mining terminology, the ith transaction of
D. The number of transactions is thus n. The columns of the matrix represent
the m features or items of the transactions. We assume in this work that each
transaction belongs to one of two classes, represented by 0 and 1. Hence, the
database can be split into DT, a matrix of size nt x m, containing all the

4 Hélene Verhaeghe et al.

transactions from D associated to class 1, and D™, a matrix of size n~ x m,
containing the ones associated to class 0.

In this work we are interested in finding decision trees. Each internal node
w of a decision tree is associated to a feature (called the decision of the node)
dlw] € {1,...,m}; each leaf is associated to a Boolean b[w], representing the
prediction for that leaf. We will use the function F(r, t) to represent the predicted
value for transaction ¢ on a tree with root r, defined recursively as

blw] if w is a leaf;
F(w,t) = § F(left(w),t) if Dy gju) = 1; (1)
F(right(w),t) if Dy gj) = 0.

Here left(w) (resp. right(w)) returns the left-hand (resp. right-hand) subtree of
node w.

We define the depth of a decision tree to be the maximum number of features
on any path from the root of the tree towards a leaf. Given a maximum depth,
our goal is to find a decision tree that minimizes the number of misclassified
transactions (i.e., transactions where v[t] # F(r,t)):

mlnz (r,t) # v[t]]. (2)

We allow for the additional specification of a constraint on the minimum number
of examples Ny, in each leaf of the tree [3,14],

An extension of the problem is to consider more than two classes (multi-class
decision trees). We will limit our discussion to binary classes, but the extension
towards data with more than two classes is relatively straightforward.

3.2 The CovERSIZE Constraint

To determine the accuracy of a decision tree, we need to decide in which nodes of
the decision tree a transaction ends up. A correspondence can be drawn here with
the cover of itemsets in itemset mining [13, 14]. We exploit this correspondence
by adapting the COVERSIZE global constraint [18] to the context of learning
decision trees. The original COVERSIZE has the following parameters: an array
of Boolean variables (one variable for each feature), the database, and a counter
variable, and is defined as follows:

COVERSIZE([T1,..., Im], D,c) <= c=| (| {t € {1,....n} | Dr; =1}|. (3)
Iizl

The goal of the constraint is to link an itemset to the number of transactions con-
taining the itemset. The itemset is represented by the Boolean array [I1, ..., L]
Boolean I; is true if and only if feature 7 is included in the itemset. A transaction
contains an itemset if and only if every feature in the itemset has value 1 in the
transaction.

Learning Optimal Decision Trees using Constraint Programming 5

The dense representation of an itemset using a bit vector is unnecessary and
impractical in our application. Instead, we will use a sparse representation:

COVERSIZES({K1, .., Ko}, D,¢) <= c = | {t € {L,..n} | Dk, =1} (4)
i=1

This constraint has the following parameters: a set of integer variables { K7, ..., K, }
(each representing the identifier of a selected feature), the database and the cover
counter. Similar propagation is possible for this constraint as for COVERSIZE.

Note that in the standard COVERSIZE constraint, we only test whether an
item is included in a transaction (D g, = 1). In decision trees, we will also need
to be able to test that an item is absent in a transaction. Neither with the initial
COVERSIZE constraint nor its sparse version, is it possible to test for the absence
of an item. To address this weakness, we propose the COVERSIZESR constraint,
defined as follows:

CovERSIZESR({K, ..., Ko}, {L1, ..., s}, D, ¢) <

take set drop set

a b
Cc = | (ﬂ{t S {1, ,n} I Dt,Ki = 1}) m (ﬂ{t € {1, ,n} | Dt,Li = O})‘
B h)

The take (resp. drop) set defines the features that should (resp. should not)
appear in the counted transactions. This is also a straightforward modification
of the original COVERSIZE constraint.

4 CP Modeling of the Problem

4.1 Model of the Problem

In this section, we will introduce the variables and constraints used in our model.
Fig. 1 shows a visualization of our model for trees of a maximum depth of 3.

Note that in our model, we assume that a decision tree is a perfect tree. This
assumption is motivated by the existence of a mapping of any proper binary
tree (i.e., a tree where each node has exactly 0 or 2 children) into a perfect
one (i.e., proper binary tree with all the leaves at the same level). We add a
dummy feature fy, not belonging to any of the transactions, to the model for
unused decision nodes. A node with this value therefore has no transaction from
the database on its left branch. Figure 2 shows how a proper tree can be made
perfect by the use of the dummy feature.

The nodes (N) of a perfect decision tree can be partitioned into two groups:
the decision nodes (N'P), which are associated to a decision and which have chil-
dren, and the leaves (N?), which do not have children. The decision nodes (NP)
can be further partitioned into the end-nodes N¢, which do not have decision

6

Hélene Verhaeghe et al.

Algorithm 1: COVERSIZESR pseudo code

[e S B R R I

10
11
12
13

14
15
16

17
18

19

takeunbound < {x: x € {K1, ..., Ko }&(x unbound||Az| > 0)}
dropunbound < {z : x € {Kq, ..., Ko }&(x unbound||Az| > 0)}
mask « 0%
for z € dropunbound do
if z is bound then

dropunpound < ATOPunbound \T

mask < mask U support|z]

hasLBchanged < true

mask < ~ mask
for z € takeunbound do
if z is bound then
takeunbound < takeynbound \T
L mask < mask N support|z]

cover <— cover N mask
ub « cover.count()
for do

if |takeunbouna| = 0&|dropunbound| = 0 then

NN

NS

Fig. 1: Representation of a perfect decision tree of depth 3

ND

NC

nodes as children, and the nodes NV, which do. Variables and constraints are
defined by the type of the node.

In our model, the number of variables and constraints are independent from
the number of transactions in the database and the number of features. In fact,
the number of variables and constraints only depends on the number of nodes
in the tree.

Learning Optimal Decision Trees using Constraint Programming 7

—Yyes—y

<im0 -

(a) Proper binary tree (b) Equivalent perfect binary tree

Fig. 2: Example of the use of the dummy feature f to transformed the proper
binary tree into a perfect binary tree

Variables In our model we have variables with the following domains:

dom(d[i]) = {0,1,...,m} Vi e NP (6)
dom(c*[i]) = {0,1,...,|D"|} Vie N (7)
dom(c™[i]) ={0,1,...,|D" |} Vi e N (8)
dom(c[i]) = {0} U {Numin, Nmin + 1,...,|D|} Vie NF 9)
dom(e[i]) = {0,1,...,min{|DT|,|D”|}} Vie N (10)

Each decision node has a decision variable d (6) to model the decision feature.
Its value can be 0 (representing the dummy feature fy) or between 1 and m
(representing one of the actual features fi to f,,). Two counters, ¢t (7) and
¢~ (8), are defined for each node of the tree. They are used to keep track of
how many transactions respectively from DT and D~ match the decisions of
the ancestors of the node. A third counter ¢ (9), defined at the leaves, tracks
the total number of transactions. The minimum number of transactions in each
leaf is enforced by constraining the domain of ¢ from Ny, to |D]. Value 0 also
belongs to the domain and is meant to be used only when the parent of the node
is inactive (i.e. when its decision is fp). An additional variable e (10), defined
for each node, keeps track of the error of the sub-tree rooted at that node. Our
model does not have an explicit variable for the class of the leaves. However, this
can be easily deduced from the solution by taking the class associated with the
highest counter.

8 Hélene Verhaeghe et al.

Constraints On these variables, we define the following constraints:

et i) + ¢ [i] = cld] Vie N© (11)
i) = ¢t eft(i)] + ¢ [right(i)] vie N? (12)
¢ [i] = ¢ [left(s)] + ¢~ [right(s)] Vie N? (13)
eli] = min{c"[i], ¢ [i]} Vie N© o (14)
eli] = e[left(i)] + e[right(i)] vie NP (15)
COVERSIZESR (take(i), drop(i), ¢ [i], DT) Vie N© (16)
CoVERSIZESR (take(i), drop(i), ¢~ [i], D7) Vie N* (17)
ALLDIFFERENTEXCEPTO({d[j] | j € ancestors(i)} U {d[i]}) Vie N (18)
dli] # 0 = min{c"[i], ¢ [i]} > e]i] vie NP (19)
dli] = 0 = (d[left(i)] = 0 A d[right(i)] = 0) vie NN (20)

First, constraint (11) links the counters at the leaves. Second, the counters at
the decision nodes are linked to the counters of their children (12, 13). Third,
the value of e[i] is assigned to be the minimum between the class counters (14)
at the leaves or to the sum of the errors from the children of ¢ (15) for each of
the decision nodes. To compute the values of the counters c¢*[i] and ¢~ [i], we
need to know which transactions match the decisions of the ancestors of the leaf.
To this end, two COVERSIZESR global constraints (16, 17) are added at each
leaf, one for each class. The decision variables of the ancestors (an ancestor is
either the parent of a node, either the parent of an ancestor) are divided into
two distinct sets: The take set take(i) = {d[j] | j € ancestors(i) A left(j) €
ancestors(i) U {i}}, containing the wanted features, and the drop set drop(i) =
{d[j] | j € ancestors(i) A right(j) € ancestors(i) U {i}}, containing the rejected
features.

The next two constraints ensure the decision tree has no useless nodes. A
node is useless if the decision taken in it was already taken in one of the ancestor
nodes. An ALLDIFFERENTEXCEPTO (18) is used on the ancestors at each end-
node to avoid this. A node is also useless if all the leaves below have the same
class. This is avoidable if we constrain the error at the node to be strictly higher
than the error of the subtree (19). Finally, when a decision node is inactive, all
the decision nodes below should be inactive as well (20).

These constraints are enough to guarantee an optimal, well-formed tree (with
no dummy decision feature being a parent from a non dummy decision and with
no decision leading to only one classification).

Objective The objective is to minimize the sum of the errors at the leaves,
which is stored in e[root].

Learning Optimal Decision Trees using Constraint Programming 9

Redundant constraints We add a number of redundant constraints to make
the search more efficient:

dom(c[i]) = {0} U {Nmin, Numin + 1,...,|D|} Vie N (21)
i) + ¢ [i] = i) VieN (22)
COVERSIZESR (take(i), drop(i), ¢t [i], DT) Vi € M\areRight(N) (23)
CoVERSIZESR(take(i), drop(i), ¢ [i], D™) Vi € N\areRight(N) (24)
¢ [i] < Niin = d[i] =0 vie NP (25)
¢ [i] < Nmin = d[i] =0 vie NP (26)
cli] < 2Nmin = dfi] =0 vie NP (27)
dfi] # 0 = (c[left(:)] > Numin A c[right(i)] > Nuin) vie NP (28)

Here, areRight(N) = {i | i € N Ai = right(parent(¢))}; it represents the set of
nodes being the right child of another node.

Adding a constraint COVERSIZESR for all of the nodes in the tree allows the
computation of the exact values of the counters earlier in the tree and therefore
helps prune earlier some candidate solutions. However adding them to all the
decision nodes is not necessary. Constraints (12) and (13) can be relied on to
compute the counters of one child based on the counters of the parent and the
sibling. Constraints (23) and (24) are therefore used instead of (16) and (17).
This allows a better propagation while using the same number of COVERSIZESR
constraints. Constraints (25, 26) concern nodes with only transactions from one
class left. When this arises, no decision should be taken in the node. As a mini-
mum number of transactions should be in each activated node, if a given decision
node does not have more than twice the threshold, no solution accepts a decision
in the node (27). The contrapositives of (25), (26), (27) are also logically true.
Combined together, they correspond to (28) which states that if the dummy
decision is no longer in the domain, there should be enough transactions in each
of the children. This constraint formulation requires to have the counter ¢ (21)
and the constraint linking the counters at each node (22).

4.2 Search

The motivation behind the use of a specific search strategy is to exploit the tree-
decomposition into subproblems. During search each node of the search tree is
associated to a subtree of the decision tree being built. This subtree, identified by
the node id currProblem, is always rooted on a decision node. The assignment
of the decision variables occurs in top-down fashion. Therefore in a given node
of the search tree, we can always assume every node in ancestors(currProblem)
has been assigned. Algorithm 2 details the pseudo code of our algorithm.

Big picture. Our search is the composition of three techniques: AND/OR
search trees, branch-and-bound optimization, and memorization. Each of them
aims to answer one of the specificities of the problem.

10 Hélene Verhaeghe et al.

o) = £ 0] = .

. ‘,J

|d[1] = fi || d[;] = fr1 ” d[1] = fi2 || d2] = fr2 ” d[1] = fi || d[2.]
))

Fig. 3: Decompositions

AND node
OR node

Q Leaf node
&/@(; » -
\é& é}éé \g :9,5‘

a[iy? d[2]? ary? d[2]?

% % ~ o

N N N N
Varll <. Vanli % Vanlk %

% S SN

Péi'rt Péi'rt ‘i't Péi'rt Péi'rt Wt Péi'rt Péi'rt ‘i't Péi'rt Péi'rt ‘i't
SOL SOL SOL SOL SOL SOL SOL SOL

Fig.4: AND/OR formulation of the search tree

Subtree independence. Given a subtree with its root decision and ancestors’
decisions assigned, its two children are totally independent from one another.
Any solution from the left child combined with any solution from the right child
leads to a solution of the initial subtree. This is illustrated at Fig. 3a. However
our goal is to find the best solution and not one solution. Moreover our objective
function is the sum of a cost computed in each of the leaves, independently.
Therefore, the optimal solution, given a root and ancestors’ decisions already
assigned, can be computed independently by computing the optimal left child,

Learning Optimal Decision Trees using Constraint Programming 11

Algorithm 2: AND/OR formulation with cache

1 Method search(currProblem: € N'P):(Tree,Cost)
2 L return ORnode(currProblem, co)

3 Method ORnode(currProblem: € N7, cost,s):(Tree,Cost)

4 prefix_hash < getPrefixHash(currProblem)

5 if storage.contains(prefix hash) then // optimal already computed
6 (s0lpest, COStpest) <— storage.get(prefix_hash)

7 return (solpest, COStpest)

8 else

9 CcoStpest $— COStyp

10 S0lpest < null

11 forall f € dom(d[currProblen|) do // following value ordering
12 d[currProblem].assign(f)

13 if currProblem € N then

14 ‘ (80ltree, COStiree) < ANDnode(currProblem, costpest, f)

15 else

16 SOltree < Tree(featurelID: f left : null right : null)

17 L coStiree < €[currProblen|

18 if costpest > costiree then

19 cOStpest ¢— COStiree

20 L SOlpest < SOltree

21 storage.add(prefix_hash, (solpest, COStpest)) // new sol cached

22 return (solpest, COStpest)

23 Method ANDnode(currProblem: € ND,costub,f,«oot):(Tree,Cost)

24 (solieyt, costicst) < ORnode(left(currProblem), costyp) // 1st

25 if costieft > costyus then

26 L return (null, co) // pruning based on cost

27 (solright, costright) < ORnode(right(currProblem), costys — costicst)// 2nd
28 S0liree < Tree(featureID : froor left : soliesr right : solright)

29 return (soliree, COSticft + COStright)

then the optimal right child and finally combine them. The AND/OR search
tree [9, 11] framework is well suited for this kind of decomposable problem. The
search is composed of two types of search nodes: the OR nodes (line 3) and the
AND nodes (line 23). An example of the search tree for a decision tree of depth
2 is shown at Fig. 4.

The AND node is responsible for computing the optimal value of the left
child (line 24), then the right child (line 27), and finally returns the composed
solution (line 28). The OR node tests all the possible values for the root decision
variable of currProblem (line 11). The ordering used to select the next value to
test follows the principle of entropy [7]. The entropy of a set of transactions is
computed using the number of transactions from each class, and is a well-known

12 Hélene Verhaeghe et al.

heuristic in standard algorithms for learning decision trees:

Entropy(S) = ftes];)'[t] =1} log, (I{t €S]g[t] = 1}|>
_leeszo =0}, (e S o] =0)
5] 1 gz(5]) (29)

The information gain of a feature f is the difference between the initial entropy
and the weighted entropy of a partition of the database into transactions with
and without the feature:

_ |{t€D2Dt,f = 1}‘
Dl

_ {t € D: D, =0}|

Dl

Gain(f) = Entropy(D) Entropy({t € D : D¢y = 1})

Entropy({t € D: Dy =0}). (30)

The classification is expected to be better when the gain is higher. We sort the
values by decreasing gain. This ordering is computed once at the beginning of
the search and is reused at every search node. After assigning the selected value,
if the subtree still contains decision variables (i.e., if currProblem belongs to
NN, then the optimal subtrees are computed using an AND node (line 13). In
the other case (i.e., if currProblem belongs to N'¢), then we have already an
optimal subtree (line 15). From all the values tested, the best sub-tree is kept
(line 18) and returned (line 22).

Subtree equality. Two subproblems are equivalent whenever the set of deci-
sions on the paths towards these nodes (the itemsets corresponding to the sets
of decisions) are identical. Figure 3b shows how some subtrees can be the same
in two different solutions due to paths that represent the same itemset. This
is taken care of by using a caching system similar to the one used in the DL8
dynamic programming approach [13]. Two subtrees are equivalent if they share
the same assigned prefix. The prefix of node 4 is composed of the values assigned
to the decisions of the ancestors. These values are separated in two distinct sets:
The take set {d[j] | j € ancestors(i) Aleft(j) € ancestors(i) U {i}}, and the drop
set {d[j] | j € ancestors(i) A right(j) € ancestors(i) U {i}}. Two subtrees with
the same take and drop sets are thus equivalent. A hash is computed from these
sets and serves as key to store and retrieve the optimal subtree from storage
(hashMap). In addition to the decision in the root of the subtree, its cost is also
stored, easing the computation. The search for an already computed solution
happens at the beginning of an OR node (line 5). A new solution is stored when
a new complete optimal subtree is computed, i.e. at the end of the OR node
(line 21).

Minimization. In order to decrease the number of explored search nodes, a
pruning by minimization is added to the search. At each of the search nodes,

Learning Optimal Decision Trees using Constraint Programming 13

the upper bound of the allowed cost is propagated from node to node. During
an OR node, this upper bound is decreased each time a better solution is found
(line 18). During an AND node, the propagated upper bound is first propagated
to the computation of the first child. If the result of this first child is above
this propagated upper bound, then there is no need to compute the right child
since any solution would be above the propagated upper bound (line 25). This
is triggered if the best solution was already cached and has a higher cost than
the bound or if there is no solution with a cost smaller than the upper bound.
An invalid subtree is then returned. If the first child is lower than the upper
bound, the second child can be computed and the propagated upper bound for
its computation is the difference between the propagated upper bound of the
tree and the cost of the already computed tree (line 27).

In practice. Oscar, the solver used in our experiment does not implement
the AND/OR search tree framework. To avoid an invasive modification of the
solver, the AND/OR tree is simulated using a custom OR tree. For further
implementation details, the source code is available online?.

5 Results

We compared our algorithm to two exact methods developed in earlier studies:
BinOCT [19] and DL8 [13]. As both studies have already tested the quality
of the resulting trees and as [3] had already stated that the more close to the
optimal the tree is, the more accurate the classification, we decided to focus
our experiments on the run time performance of our algorithm, and not on the
validation of the quality of the trees.

Dataset H n nt nT om Dataset H n nt nT om
anneal 812 625 187 93 lymph 148 81 67 68
audiology 216 57 159 148 mushroom 8124 4208 3916 119
australian-credit|| 653 357 296 125 pendigits 7494 780 6714 216
breast-wisconsin|| 683 444 239 120 primary-tumor|| 336 82 254 31
diabetes 768 500 268 112 segment 2310 330 1980 235
german-credit 1000 700 300 112 soybean 630 92 538 50
heart-cleveland 296 160 136 95 splice-1 3190 1655 1535 287
hepatitis 137 111 26 68 tic-tac-toe 958 626 332 27
hypothyroid 3247 2970 277 88 vehicle 846 218 628 252
ionosphere 351 225 126 445 vote 435 267 168 48
kr-vs-kp 3196 1669 1527 73 yeast 1484 463 1021 89
letter 20000 813 19187 224 z00o-1 101 41 60 36

Table 1: Description of the instances

2 https://bitbucket.org/helene_verhaeghe/classificationtree

14 Hélene Verhaeghe et al.

Dataset d Nmin = 1 Nmin = 5
DL8 BinOCT CP DL8 CP CP-c CP-m
obj | t ‘ obj| t ‘ obj | t obj| t ‘ obj| t ‘ obj | t ‘ obj | t
anneal 1377 1 [|137%206]|137% < 1|||137%< 1]|137%< 1]|137*< 1]|137"< 1
anneal 1127 37 ||112|TO||112"| 6 1127 31 |[112% 7 |[|112" 7 ||112* 8
anneal oo |TO|| 121 [TO|| 91" |372||| 94" |591|| 94" |365|| 94" |508|| 94™ |283
anneal oo [TO|| 120 |TO|| 86 |TO oo |[TO|| 92 |TO|| 92 |TO|| 92 |TO
audiology 10" |< 1|[10" | 60 || 10" |< 1| 11" |< 1||11" |[< 1|| 11" |< 1|[11" <1
audiology 5% | 62 7 |TO|| 5™ |15 T 2 e 3 e 2 ' 3
audiology oo | TO 1 |TO 1 |TO 4* |43 || 4* |111|| 4™ |100]|| 4" | 66
audiology TO|| 4 |TO|| 0 |TO]||| 1* |512|| 1 |TO|l 1 |TO|| 1 |TO

oo
87*| 2 || 87" |206|| 87" < 1|||87"| 2 ||87"|< 1|87 |<1||87"| 1
73* |124|| 86 |TO||73* |29 ||| 74" | 90 || 74" | 27 || 74" | 33 || 74" | 33
oo |TO||l 85 |TO|| 60 |TO oo |TO||l 66 |TO|| 66 |TO|| 66 |TO
22%| 2 ||227] 44 || 227 [< 1]||22"| 3 |[22" [< 1||22" [<1][22"|< 1
15*|103|| 16 |TO||15* |16 |[|15" | 80 ||15™ | 18 ||15™ | 17 || 15™ | 23
oo |TO|| 16 |TO|| 8 |TO o)
1777 1 180 | TO (1777 < 1|||177" 1 ||177Y< 1||1777|< 1||177Y < 1

australian-credit
australian-credit
australian-credit
breast-wisconsin
breast-wisconsin
breast-wisconsin

diabetes
diabetes 162 93 || 171 | TO||162% 24 |||162% 90 ||162% 25 ||162* 32 ||162% 29
diabetes TO|| 169 | TO||137 | TO TO|[138|TO||138 |TO|| 138 |TO

00 00

267% 2 ||267|TO||267"< 1|||267" 2 ||267"|< 1||267"|< 1||267"< 1
236" 129|| 249 |TO||236" 28 |||236122||236"| 28 ||236™| 37 |[236™ 33
oo |TO|| 244 | TO||204 | TO oo |TO||205|TO|[205|TO||205|TO
60" |< 1|| 60" |312|| 60" [< 1|||60" |< 1||60" |[< 1|/60" |< 1{[60" |< 1
41" | 17 || 43 |TO|[41" | 9 41" | 15 ||41*| 9 || 41" | 11 ||41™ |11
25* |515|| 39 |TO|| 25 [TO|||27* |404|| 27 | TO|| 27 |TO|| 27" |497
oo |TO|| 34 |TO|| 10 |TO oo |TO||l 18 |TO|| 36 |TO|| 18 |TO

german-credit
german-credit
german-credit
heart-cleveland
heart-cleveland
heart-cleveland
heart-cleveland

hepatitis 16" < 1||16"| 8 [[16™ |[< 1|||16™ [< 1||16" |< 1|/16" |<1|/16" |<1
hepatitis 10*| 4 12 |TO||10*| 2 11*| 2 |[11*| 3 ||11*| 3 |[11*| 3
hepatitis 3* |54 || 10 |TO|| 3* | 92 8* |36 || 8 |98 | 8 [112]| 8* | 69
hepatitis oo |TO|| 7 |TO|l 0* |19 5% [299|| 8 |TO|| 8 |TO|l 6 |TO

70" | 4 ||70" |178|| 70" |< 1|||70* | 3 || 70" |< 1|| 70" |< 1||70" |[< 1
61* |122|| 62 |TO|| 61" |12 |||62™ | 95 |[62" | 11 || 62" |11 || 62" | 16
oo |TO||l 62 |TO|| 53 |TO oo |TO|| 54 |TO|| 54 |TO|| 54" |552

hypothyroid
hypothyroid
hypothyroid

CU WA WN A WNUUE WN U WN A WN B WN R WK B WN R WN O WN

ionosphere 32* | 50 32 |TO||32"| 4 32% |48 [|82* | 4 |[|32"| 4 ||32*| 8

ionosphere oo |TO|| 29 | TO|| 22 | TO oo |TO|| 22 |TO|| 22 |[TO|| 24 |TO
ionosphere oo |TO|| 26 | TO|| 14 | TO oo |TO|| oo |TO|| 20 |[TO|| oo |TO
kr-vs-kp 4187 2 418 [TO||418%< 1|||418 2 |[418%< 1|/418%|< 1||418%|< 1
kr-vs-kp 198 74 || 301 [TO||198" 6 198 63 [|198% 8 ||198% 8 ||198* 11

kr-vs-kp oo |TO|| 877 |TO|[144%378 oo |TO|[|144%455(|144%554(|144%345
kr-vs-kp oo |TO|| 675 | TO||132|TO oo |TO|[132|TO||132|TO||132|TO

Table 2: Results (part 1) Time out = 10 min, best value (obj or time) for a given
Nmin in bold, optimal obj proven indicated with *

The benchmark is composed of instances from the CP4IM? and UCI # web-
sites. Their description is given at Table 1. BinOCT is a MIP-based approach
running on CPLEX. It does not allow to give a specific value for Npy,. If a
timeout is reached, the method outputs its best solution so far. We used the
implementation available online with as arguments the depth, the timeout (10
min) and a polishing time (2.5 min). The polishing time is used to configure the
CPLEX solver. At timeout minus the polishing time, CPLEX changes its search
strategy. Polishing [17] is time consuming, but it allows improving a solution
when the search stagnates. DL8 is a dynamic programming approach. It com-

3 https://dtai.cs.kuleuven.be/CP4IM/datasets/
4 https://archive.ics.uci.edu/ml/index.php

Learning Optimal Decision Trees using Constraint Programming 15
Dataset d Nmin = 1 min = D
DL8 BinOCT CP DL8 CP CP-c CP-m
obj ‘ t H obj ‘ t ‘ obj ‘ t obj ‘ t ‘ obj ‘ t ‘ obj ‘ t ‘ obj ‘ t
letter 2 oo | TO|| 813 | TO||599% 9 oo |TO||599% 13 ||5997 13 ||5997 24
letter 3 oo |TO||l 813 |TO||531|TO co |TO||531|TO||531|TO|| 532 |TO
lymph 20| 22* |[< 1]| 22| 17 || 22" [< 1||| 22" |< 1|| 22" |< 1|| 22" |[< 1| 22" |[< 1
lymph 3|12 | 2 13 |TO||12* | 2 13* | 1 13*| 2 13*| 2 13*| 2
lymph 4 3* | 43 8 |TO|| 83* | 85 T |15 || 7" | 54 7" | 58 T | 44
lymph 5|/|| co |TO|l 8 |TO|l 0" | 5 4* |166|| 4 |TO|l 4 |TO|l 4 |TO
mushroom 211|252 27 || 520 | TO||252%|< 1|||252% 24 ||252% < 1||252" 1 ||252" 1
mushroom 3l|| oo |TO|[396 | TO|| 8" |36 oo |TO|| 8 |46 || 8" |46 || 8" | 64
mushroom 4l|| oo |TO|[| 160 | TO|| 0* |< 1||| co |TO|| 0" |< 1|| O* |<1|| O |TO
pendigits 2 oo |TO||153|TO|[153% 3 oo |TO||153% 4 ||153" 4 ||153" 8
pendigits 3 oco |TO|| 496 | TO|| 47 |TO oo |TO|l 47 |TO|| 47 |TO|| 47 |TO
primary-tumor 2||| 58" |< 1||58% | 5 || 58" |< 1|||58" |< 1|/58% |< 1||58" |< 1||58" <1
primary-tumor 3||| 46™ |[< 1|| 49 |TO|| 46" |< 1||| 46" |< 1|/46™ |< 1|/46™ |< 1|[46" |< 1
primary-tumor 4[| 34" | 2 39 |TO||34"| 6 40" | 1 ||40"| 6 [|40"| 9 |[40™| 5
primary-tumor 5||| 26™ | 14 37 |TO||26™ |129]|| 34 | 8 || 34™ |103]|| 34™ |224||34™ | 39
segment 2 9" | 49 9 |TO|| 9* 1 9™ | 41 9" 2 9" 2 9" 3
segment 3||| co |TO|l 6 |TO||l 0* |13 co |TO|| 2* |242|| 2* |248|| 2* |399
segment 4{|| oo |TO]|| 21 |TO|| 0* |115]|| co |TO|| O |TO|| O |TO|l 1 |TO
soybean 2|||55™ |[< 1||55™ | 19 ||55™ |[< 1|||55™ [< 1]| 55" |< 1]| 55" |< 1||55™ |< 1
soybean 3(|[29" | 2 42 |TO|[29" | 1 29" | 2 [|29"| 1 |[29"| 1 ||29"| 2
soybean 4(l|14* | 33 16 |TO||14™ | 34 15* | 27 ||15™ | 37 ||15* | 44 || 15* | 26
soybean 5 8" |315|| 24 |TO 8 |TO|||13* |239|| 18 |TO|| 13 |TO||13* |407
splice-1 2||508%143|| 522 | TO||5087 5 5087 89 ||508*| 4 ||508" 4 ||5087 7
splice-1 3 oo |TO|| 574 | TO||224 | TO oo |TO|[225|TO||225|TO||225|TO
tic-tac-toe 2(||282 < 1||282* 10 ||282*|< 1|||282*|< 1||282"|< 1||282%< 1||282%< 1
tic-tac-toe 3|[|216" < 1|| 231 | TO||216%< 1{||216"< 1||216"< 1{|216" 1 ||216%< 1
tic-tac-toe 4111877 3 169 | TO|[187" 7 137% 3 ||187% 7 ||187* 15 ||137* 6
tic-tac-toe 5(||63 |16 || 128 [TO||63* [125|||63* | 16 || 63" |140|| 63 |435|| 63™ | 63
vehicle 2||| 75™ | 23 75 |TO|| 75| 1 75% |20 (| 757 | 1 75% | 1 75% | 3
vehicle 3 oo |TO|| 60 |TO|| 26" |236 oo |TO|| 28* |266|| 28" |292 || 28™ |473
vehicle 4 oo |TO|l 84 |TO||l 19 |TO oo |TO|l 21 |TO|| 21 |TO|| 21 |TO
vote 2([| 17" [<1||17"| 8 |[17" |< 1|||18" |<1||18" |< 1||18"|< 1|/18"|< 1
vote 3| 12* | 2 13 [TO||12* | 1 13| 1 13| 1 13| 1 13*| 2
vote 4 5% | 23 11 |TO|| 5™ | 44 6™ |13 || 6* | 29 6™ | 33 6™ | 29
vote 5 1* |248|| 5 |TO 1 [TO 3* |118|| 3* [430]|| 3* [496]|| 3" |417
yeast 201|437 2 437 | TO||437"|< 1|||437* 2 ||487"< 1||437"< 1||437" < 1
yeast 3(({403% 74 || 430 | TO||403* 12 |||403* 70 ||403*| 15 ||403"| 19 [|403% 17
yeast 4 oco |TO||l 412 |TO||367|TO oo |TO||367|TO|| 367 |TO| 367 |TO
z0o-1 2||| 0* |< 1| 0" |<1|] 0" |<1f||] 0 |<1|] 0 |<1|| 0" |<1|] 0" |<1

Table 3: Results (part 2) Time out = 10 min, best value (obj or time) for a given
Npin in bold, optimal obj proven indicated with *

Npin =1 Npin =5
H DL8 |BinOCT| CP H DL8 | CP | CP<c | CPm
Proven optimality || 49(64%) | 13(17%) | 57(75%) || 54(71%) | 56(74%) | 56(74%) | 58(76%)
Best solution found || 49(64%) | 21(28%) | 76(100%)|| 54(71%) | 74(97%) | 74(97%) | 70(92%)
Fastest 23(30%) | 11(14%) | 49(64%) || 28(37%) | 40(53%) | 33(43%) | 22(29%)
Time out 27(36%) | 63(83%) | 19(25%) || 22(20%) | 21(28%) | 21(28%) | 19(25%)

Table 4: Summary of the results

putes a subset of the frequent itemsets and then builds the optimal tree from it.
This approach does not output any intermediate non-optimal tree. We used the

16 Hélene Verhaeghe et al.

implementation provided by the authors with as arguments the depth and the
minimum support (value of Nyin).

The first part of Table 2 and Table 3 shows the results for the three meth-
ods (DL8, BinOCT and ours) with Ny, = 1 using a timeout of 10 mins. The
second part of Table 2 and Table 3 shows the results for two methods (DL8 and
ours) and some variations of our approach (without the caching and without the
pruning using bounds) with Np,;,, = 5 using a timeout of 10 mins. This compari-
son does not include BinOCT since its implementation cannot take into account
Nmin- A value of 5 is chosen, as this yields results that are more statistically sig-
nificant. Table 4 summarizes our results. For each of the algorithms, the number
of instances where the optimality is proven, the solution found is the best among
the tested algorithms, the algorithm was the fastest and timeout is reached are
gathered.

Our method outperforms the two others on most of the instances. It could find
and prove optimality on roughly 75% of the instances within the time limit. The
best solution found was reached by our method in almost every cases. However,
DLS8 performs better on small instances such as hepatitis, lymph or primary-
tumor. The large difference between BinOCT and our method can be explained
by the benefits of the AND/OR search that is not used by BinOCT. The gap
with DL8 can be partially explained by the cost pruning. It can possibly also be
explained by the itemset mining algorithms used: DL8 lacks the optimizations
found in the CoverSize constraint [18].

Finally the effects of the cache and the pruning using the best known partial
solutions can be observed. CP-c gives the results of our method when the cache
system is not used and CP-m gives the results when the pruning using the best
partial solution is not used. The cache becomes really useful at depth 4 (or more)
and some instances greatly benefit from it (e.g. the anneal benchmark with a
depth of 4 improves its timing by almost 30% when adding the cache). The
effect of the pruning is significant in some cases. On some benchmarks such as
mushroom, ionosphere or vehicle, the pruning improves greatly the solution (ex.
on vehicle depth 4, the time is divided by 1.7). On other benchmarks such as
hepatitis, lymph or primary-tumor, it decreases the performance. These instances
coincide with the ones where DL8 performs better.

6 Conclusion

We presented a new approach for efficiently creating an optimal decision tree of
limited depth. On most of the benchmarks, it gives the best solution within the
allocated time and is the fastest to prove optimality.

We believe our approach can be extended in a number of different ways. It
is straightforward to extend it to the multiclass setting, by adding counters and
COVERSIZESR constraints for each of the additional classes. We assumed the
input data was binary; if the data was not binary, it can be binarized beforehand
[6]. Of particular interest can also be addition of further constraints and the use
of other cost functions that can be expressed as a sum of costs at the leaves.

Learning Optimal Decision Trees using Constraint Programming 17

References

10.

11.

12.

13.

14.
15.
16.
17.

18.

19.

. Aghaei, S., Azizi, M.J., Vayanos, P.: Learning optimal and fair decision trees for

non-discriminative decision-making (2019)

Babaki, B., Guns, T., De Raedt, L.: Stochastic constraint programming with and-or
branch-and-bound. In: Proceedings of the Twenty-Sixth International Joint Con-
ference on Artificial Intelligence, IJCAI 2017, Melbourne, Australia, August 19-25,
2017. pp. 539-545 (2017)

Bertsimas, D., Dunn, J.: Optimal classification trees. Machine Learning 106(7),
1039-1082 (2017)

Bessiere, C., Hebrard, E., O’Sullivan, B.: Minimising decision tree size as combi-
natorial optimisation. In: International Conference on Principles and Practice of
Constraint Programming. pp. 173-187. Springer (2009)

Bonfietti, A., Lombardi, M., Milano, M.: Embedding decision trees and random
forests in constraint programming. In: International Conference on AI and OR
Techniques in Constriant Programming for Combinatorial Optimization Problems.
pp. 74-90. Springer (2015)

Breiman, L.: Classification and regression trees. Routledge (1984)

Cover, T.M., Thomas, J.A.: Elements of information theory. John Wiley & Sons
(2012)

. Dechter, R., Mateescu, R.: The impact of AND/OR search spaces on constraint

satisfaction and counting. In: Principles and Practice of Constraint Programming
- CP 2004, 10th International Conference, CP 2004, Toronto, Canada, September
27 - October 1, 2004, Proceedings. pp. 731-736 (2004)

Dechter, R., Mateescu, R.: And/or search spaces for graphical models. Artificial
intelligence 171(2-3), 73-106 (2007)

Laurent, H., Rivest, R.L.: Constructing optimal binary decision trees is np-
complete. Information processing letters 5(1), 15-17 (1976)

Marinescu, R., Dechter, R.: And/or tree search for constraint optimization. In:
Proc. of the 6th International Workshop on Preferences and Soft Constraints. Cite-
seer (2004)

Narodytska, N., Ignatiev, A., Pereira, F., Marques-Silva, J., RAS, I.: Learning
optimal decision trees with sat. In: IJCAIL pp. 1362-1368 (2018)

Nijssen, S., Fromont, E.: Mining optimal decision trees from itemset lattices. In:
Proceedings of the 13th ACM SIGKDD international conference on Knowledge
discovery and data mining. pp. 530-539. ACM (2007)

Nijssen, S., Fromont, E.: Optimal constraint-based decision tree induction from
itemset lattices. Data Min. Knowl. Discov. 21(1), 9-51 (2010)

Quinlan, J.R.: Induction of decision trees. Machine learning 1(1), 81-106 (1986)
Quinlan, J.R.: C4. 5: programs for machine learning. Elsevier (1993)

Rothberg, E.: An evolutionary algorithm for polishing mixed integer programming
solutions. INFORMS Journal on Computing 19(4), 534-541 (2007)

Schaus, P., Aoga, J.O., Guns, T.: Coversize: a global constraint for frequency-
based itemset mining. In: International Conference on Principles and Practice of
Constraint Programming. pp. 529-546. Springer (2017)

Verwer, S., Zhang, Y.: Learning optimal classification trees using a binary linear
program formulation. In: 33rd AAAI Conference on Artificial Intelligence (2019)

