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Abstract. We present a new dynamic programming-based exact solu-
tion algorithm for the Job Sequencing and Tool Switching Problem (JS-
TSP), a combinatorial optimization problem originating from manufac-
turing systems and encompassing the Traveling Salesman Problem as a
special case. We propose a new family of lower bounds for the optimal so-
lution to the problem, which are provably tighter than existing bounds in
the literature and enhance both solution quality and pruning efficiency.
We propose the use of A* and its anytime variants to explore the solution
space of the problem as well as a specific data structure, called FreeTools,
both to keep track of the state information and to compute incremental
costs throughout the implicit search efficiently. Extensive computational
experiments show that the presented approach brings significant per-
formance improvements over state-of-the-art methods for the JS-TSP,
including branch-and-bound and integer linear programming formula-
tions.

Keywords: combinatorial optimization · job sequencing · tool switching
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1 Introduction

Consider a flexible machine M that can be configured with any subset of max-
imum c tools from a given set T = {0, 1, 2, . . . ,m − 1} of m ≥ 3 tools. We
refer to c as the capacity of M. In addition, consider a set J = {1, 2, . . . n} of
n ≥ 3 jobs, that must be processed sequentially on M. Each job j ∈ J requires
a subset t(j) ⊆ T of tools and is such that |t(j)| ≤ c. Whenever a job must be
processed on M, one needs to decide which tool, from among those currently
present on M, is going to stay and which, instead, needs to be replaced. This
operation is commonly referred to as tool switching. For example, by referring
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Table 1: Example of an instance
with 9 tools and 6 jobs with a ca-
pacity of 4.

Jobs 1 2 3 4 5 6

Tools 0 1 1 0 5 3
1 3 5 4 6 5
2 4 6 6 7

8 8

Magazine capacity: 4

Table 2: Example of an optimal so-
lution for the instance 1 for which
the optimal value is equal to 11.

Jobs 1 2 4 3 5 6

Tools 0 0 0 1 6 3
1 1 6 6 7 5
2 3 8 8 5

4 4 5

Magazine capacity: 4

to the job sequence reported in Table 1, two tool switches are involved in the
transition from job 3 to job 4, in particular, tools 6 and 8 are going to stay in M
while tools 1 and 5 must be replaced by tools 0 and 4. The Job Sequencing and
Tool Switching Problem (JS-TSP) consists of determining the job sequence that
minimizes the total number of tool switches required to process the jobs in J .
For example, Table 2 shows the job sequence that minimizes the overall number
of tool switches for the instance of the JS-TSP shown in Table 1. The optimal
value for this instance is equal to 11. The tools underlined are those that give
rise to a tool switch, while the circled tools have the special property of being
not immediately necessary to process a specific job j in the sequence, but needed
for processing the jobs subsequent to j. This property, firstly introduced by [16],
gives rise to a greedy algorithm, commonly referred to as the Keep Tool Needed
Soonest (KTNS) algorithm, that computes in polynomial-time the optimal tool
switches for a fixed job sequence.

The first applications of the JS-TSP appeared in the literature already in
1966 [2]. The problem, however, was formalized only in 1987 by Tang and
Denardo [16], who first proved also its general NP-hardness. Specifically, the
authors observed that if the start and stop states of the job processing sequence
are represented by a dummy job having index 0 and t(0) = ∅, then any instance
of the JS-TSP that satisfies |t(j)| = c, for all j ∈ J \ {0}, can be seen as an in-
stance of the (symmetric) Traveling Salesman Problem (TSP) [1,8] in which the
weight associated with the edge (i, j) of the graph is equal to |t(j)|− |t(i)∩ t(j)|.
Tang and Denardo also proposed the first Integer Linear Programming (ILP) for-
mulation for the problem known in the literature, which unfortunately proved
to be rather disappointing in practice, mostly due to the poor lower bound pro-
vided by its linear programming relaxation [13]. This fact motivated the scientific
community to search for improved exact solution algorithms of practical use. La-
porte et al. [13] proposed the first ILP formulation able to improve upon Tang
and Denardo’s one as well as a Branch-and-Bound (B&B) algorithm based on
dynamic programming. The ILP formulation solved only instances of JS-TSP
containing 10 jobs and tools within the reference time of 1 hour. Ghiani et al.
[9] proposed an alternative (nonlinear) formulation for the problem able to im-
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prove upon Laporte et al.’s one when the ratio between the minimum number
of tools required by jobs and the magazine capacity is between 60% and 90%.
Bessiere et al. [4] studied a similar problem using Constraint Programming, and
Catanzaro et al. [5] proposed new ILP formulations, with the best outperforming
earlier ones but struggling to solve instances with 15 jobs and 20 tools within the
reference time. At present, the state-of-the-art exact solution algorithm for the
JS-TSP is still Laporte et al.’s B&B algorithm, which proves capable of solving
instances of the problem having up to 25 jobs and 25 tools within the reference
time. This method combines a depth-first recursive enumeration of job sequences
with combinatorial lower bounds on the optimal solution to the problem, which
proved generally poorer than the ones proposed by Catanzaro et al. [5] but that
are very fast to compute. Here, we extend the result discussed in [13] by:

– introducing a new family of combinatorial lower bounds for the optimal
solution to the JS-TSP, which are provably tighter than those described
in [13];

– proposing the use of A* and its anytime variant to explore the solution space
of the problem; in particular, we introduce a specific data structure, called
FreeTools, to keep track of the state information during the implicit search
and to compute the incremental cost of partial job sequences efficiently.

Extensive computational experiments show that the solution algorithm presented
in the next sections significantly outperforms state-of-the-art methods for the
JS-TSP, including the B&B and ILP formulations discussed in [5,13].

The article is organized as follows. In Section 2, we briefly review, for the
sake of completeness, Laporte et al.’s B&B algorithm, the KTNS algorithm, and
known lower bounds for the optimal solution to the problem; in addition, we
present a new lower bound which is provably tighter than the previous ones. In
Section 3, we introduce an alternative version of the KTNS algorithm, called
Lazy KTNS, and a specific representation of a state of the search space. The
Lazy KTNS allows to improve the efficiency of computing the incremental cost
of partial job sequences throughout the implicit search, while the specific state
representation allows to avoid the exploration of redundant nodes in the search
space. In Section 4, we analyze the results obtained when comparing the perfor-
mance of the new exact solution algorithm versus state-of-the-art methods on a
set of benchmark instances of the problem, including Laporte et al.’s B&B algo-
rithm and the ILP formulations discussed above. Finally, in Section 5, we provide
some preliminary conclusions and outline possible future research directions.

2 Brief recalls from the literature on the JS-TSP

Starting from an initially empty job sequence S, Laporte et al.’s B&B algo-
rithm [13] enumerates all the permutations of J by augmenting S in a depth-
first fashion, i.e., by appending one job at a time to S at each node of the search
space. Thus, each node of the search space is defined by the sequence S. Let
z∗ denote the optimal solution to an instance of the JS-TSP and, for a given
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Algorithm 1: Evaluate a job sequence S according to the Keep Tool
Needed Soonest (KTNS) policy.
1 Function KTNS

Input : S → a (partial) job sequence encoded as a list of integers
Output: cost → an integer encoding the cost of S

// computes next[i][t]← min{{j ∈ [i..|S|] | t ∈ t(S[j])} ∪ {|S|+ 1}}
2 next[i][t]← |S|+ 1 ∀(i, t) ∈ [1..|J |]× [1..|S|] ;
3 for i from |S| − 1 to 1 do
4 for t ∈ T do
5 if t ∈ t(S[i]) then
6 next[i][t]← i ;

7 else
8 next[i][t]← next[i+ 1][t] ;

9 t1 ← t(S[1]) ; // tools currently set on the machine
10 cost← |t1| ;
11 for i from 2 to |S| do
12 t2 ← t(S[i]);
13 cost← cost + |t2 \ t1| ;
14 t1 ← t1 ∪ t2;
15 while |t1| > c do
16 t← argmaxk∈t1

{next[i][k]} ;
17 t1 ← t1 \ {t};

18 return cost ;

partial sequence S, let R denote the subset of the remaining jobs to process, i.e.,
R = J \ S. Then, Laporte et al.’s B&B algorithm attempts to prune a generic
node of the search space by computing a lower bound lb = ẑ + z̃ for z∗, where
ẑ is a lower bound on the number of tool switches associated with S and z̃ is a
lower bound on the number of tool switches associated with R, respectively. The
choice of the next job to appended to S is determined by the following simple
heuristic: if S is empty, the job must have (i) the greatest number of tools, and
(ii) these tools must figure from among the most frequently used ones. If S ̸= ∅,
the next job is the one sharing the most tools with the last job appended.

Given a (partial) job sequence S, one can compute ẑ by using the KTNS
algorithm outlined in Algorithm 1. Specifically, the KTNS algorithm relies on
the upcoming jobs to decide the current configuration of M. The algorithm
first initializes a matrix that computes, for each tool and each position, the
soonest next position in the sequence where this tool appears (see lines 2- 8 of
Algorithm 1). Then, given the set of tools currently set in M, the algorithm
starts with the tools required by the first job S[1]. New tools required by the
next job induce a cost of 1; and after adding the tools of the next job, the
tools less urgently required in the future are removed based on their values in
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the precomputed next table to keep the capacity constraint satisfied. The time
complexity of the KTNS algorithm is O(n2 ·m).

2.1 Lower bounds on the optimal solution to the JS-TSP

We present now three possible combinatorial lower bounds on z∗ that can be
obtained by specifying a way to compute z̃. We consider in particular three
alternative bounds, denoted by z̃1, z̃2, and z̃3, the first two of which can be
derived by [6] and [13], respectively, while the third one is new. We start by
observing that if M is set up with c tools at a given state of the job processing
sequence, then any tool t which is not currently present in M and that is needed
to process any of the remaining jobs in R = J \ S will necessarily entail a tool
switch. The following lower bound captures this rationale:

z̃1 =

∣∣∣∣∣⋃
i∈R

t(i)

∣∣∣∣∣−min

c,

∣∣∣∣∣∣
⋃
j∈S

t(j)

∣∣∣∣∣∣
 . (1)

Example 1. Consider the JS-TSP instance shown in Figure 1 and assume that
M has already processed the job sequence S = ⟨1, 3, 4⟩. Consider the set R =
J \ S = {2, 5, 6}. Then,

z̃1 =

∣∣∣∣∣⋃
i∈R

t(i)

∣∣∣∣∣−min

c,

∣∣∣∣∣∣
⋃
j∈S

t(j)

∣∣∣∣∣∣
 = 6−min{4, 7} = 2.

The second lower bound, i.e., z̃2, is obtained by considering a complete undi-
rected weighted graph G = (V,E) having V = R and edge weight wij =
max {|t(i) ∪ t(j)| − c, 0} for each e = (i, j) ∈ E. Let T = (V,ET ) denote a
Minimum Spanning Tree (MST) of G, and let l denote the last job in S. The
length of this spanning tree plus the cost of the cheapest edge to connect it to l
is the lower-bound z̃2:

z̃2 =
∑

(i,j)∈ET

wij +min
i∈R

wli. (2)

Proof. A lower bound on the cost induced by scheduling j immediately after i
is given by: wij = |t(j) \ t(i)| − (c− |t(i)|). Here, |t(j) \ t(i)| represents the new
tools required for j, but up to c − |t(i)| of these tools may already have been
set due to the previous jobs scheduled before i. Simplifying, this formula yields
wij = |t(j) \ t(i)|+ |t(i)| − c = |t(i)∪ t(j)| − c. Note that this cost is symmetric,
as wij = wji. Now, observe that the length of the shortest Hamiltonian path on
G constitutes a lower bound for z∗. In turn, the length of the MST constitutes a
lower bound on the length of the shortest Hamiltonian path as the MST relaxes
the degree constraint on the internal vertices of the Hamiltonian path. Thus,
adding the cost of the cheapest edge connecting the last job of S to any vertex
of T provides a lower bound for z∗. ⊓⊔
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Fig. 1: Example of a Minimum Span-
ning Tree at the root node.
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Fig. 2: Example of a Minimum Span-
ning Tree where R = {1, 2, 3, 4}.

It is worth noting here that, in general, it is not possible to determine which
lower bound between z̃1 and z̃2 is the tightest, as shown in the following example.

Example 2. Consider again the JS-TSP instance shown in Figure 1 and assume
that M has not processed any job yet (i.e., S = ∅, R = J). In this case, we
have that z̃1 = 9−min{4, 0} = 9. To compute z̃2, it is sufficient to compute the
length of the MST for G = (V,E) having V = J with mini∈R wli = 0 as there
is no processed job. For example, a MST T for G is shown in Figure 1 and its
length is equal to wT = 1+0+0+1+2 = 4. Hence, we have that z̃1 > z̃2. Now,
consider the case in which S = ⟨5, 6⟩ and R = {1, 2, 3, 4}. Then, we have that
z̃1 = 8 − 4 = 4. By considering the MST for G = (V,E), with V = R, shown
in Figure 2, we have that wT = 1 + 2 + 2 = 5, mini∈R wli = w62 = 0 and that
z̃2 = 5. In this case, z̃1 < z̃2 holds.

A third lower bound z̃3 can be obtained by combining the rationale at the core
of z̃1 and z̃2. As for z̃2, an MST T = (V,ET ) is first computed on the graph of
the remaining jobs with the same edge weights. Let {e1, . . . , ek−1} ⊆ ET denote
a set of k − 1 edges of the MST. Removing these edges induces partitioning the
remaining jobs R into k connected components denoted as C1, . . . , Ck. Then, the
following quantity

z̃3 =

k−1∑
i=1

wei +

k∑
i=1

max (0, | ∪j∈Ci t(j)| − c) + min
i∈R

wli (3)

is a lower bound for z∗. The proof of the validity of z̃3 is omitted here. Still, it can
be easily derived from that of z̃2 by aggregating the nodes in a component and by
replacing the length of a spanning tree in each component with z̃1. Intuitively,
the proof of this bound follows the reasoning used in establishing the second
lower bound. In this case, the key difference is that an MST node may represent
a set of jobs. Since z̃1 is a lower bound for a set of jobs, it can also be used as a
lower bound on the cost associated with this node.

Note that when k = |R| − 1, each node corresponds to a component and
therefore z̃3 = z̃2 since all the edges of the spanning tree contribute to the cost.
When k = 1, there is only one component R and z̃3 = z̃1+mini∈R wli. The lower
bound z̃3 is a family of bounds since (i) several minimum spanning trees might
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Table 3: Example of the computation of the lower bound defined in Equation
(4) for the MST in Figure 2.

Ci Cj z̃3(C1) + z̃3(C2) + we | ∪j∈(C1∪C2) t(j)| − c z̃3(Ci ∪ Cj)

1 2 0 + 0 + 1 = 1 1 1
{1, 2} 3 1 + 0 + 2 = 3 4 4
{1, 2, 3} 4 4 + 0 + 2 = 6 4 6

exist for G and (ii) up to 2|R|−1 components exist for a given minimum spanning
tree. Since we cannot easily guess the best combination of spanning tree and
components to get the tightest possible value for z̃3, we use a heuristic to define
the component along the computation of the Kruskal algorithm without the
computational overhead. At each step, Kruskal adds an edge e with weight we

and thus connects two components C1 and C2. Let z̃3(C) denote the contribution
to the bound for a component C. Then, we can set

z̃3(C1 ∪ C2) = max(z̃3(C1) + z̃3(C2) + we, | ∪j∈(C1∪C2) t(j)| − c). (4)

By doing so, the bound z̃3 that we compute is at least as tight as z̃2 and is
obtained with the same time complexity, assuming constant-time computation
for union and size operations on sets. This assumption holds for most challenging
open instances with fewer than 64 tools, which can be represented as a bitset
within a single memory word.

Example 3. Consider the instance of the JS-TSP shown in Figure 1 and the
MST shown in Figure 2. Assume that M has already processed (in this order
of appearance) the set of jobs S = ⟨5, 6⟩ inducing an overall number of tool
switches equal to ẑ = 4. To compute z̃3, we apply recursively Equation (4). The
result of this recursion is shown in Table 3 and the value obtained is z̃3 = 6 >
z̃2 = 5 > z̃1 = 4.

3 A graph search algorithm

In this section, we present a new dynamic programming-based exact solution
algorithm for the JS-TSP that exploits both strategies to reduce the number of
nodes explored in the search space and a lazy version of the KTNS algorithm
that allows to compute incrementally the cost of a partial sequence so as to keep
track of the set of tools that can be reused for free later in the sequence.

3.1 A preliminary observation on the search space

The number of nodes explored in the search space can be significantly reduced by
identifying, during the implicit search, partial sequences that lead to equivalent
solutions. The next lemma provides an example of how this situation may occur.
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Lemma 1. Consider two non-empty sequences S1 and S2 (i) defined on the
same set of jobs (S1 is a permutation of S2), (ii) such that their last job is
identical last(S1) = last(S2) and such that (iii) this last job requires c tools,
then any sequence on R = J \ S1 = J \ S2 induces the same overall cost to
complete either S1 or S2.

The example provided in Lemma 1 is unlikely to occur frequently in practice,
as more challenging instances typically do not involve jobs that saturate a ma-
chine’s capacity. Nonetheless, it may be valuable to explore more complex state
representations that facilitate efficient testing of whether two partial sequences
— defined on the same subset of jobs and ending with the same job — can lead
to equivalent solutions.

Example 4. Consider three jobs: t(1) = {1}, t(2) = {2}, and t(3) = {3, 4}, out
of n jobs to be scheduled on a machine with capacity c = 4. Now, take the two
partial sequences S1 = ⟨1, 2, 3⟩ and S2 = ⟨2, 1, 3⟩. It is easy to see that the same
sub-sequence can be used to complete S1 and S2 optimally with the remaining
n−3 jobs, as the tools {1, 2} can remain on the machine at step 3 in both cases.

Building on this idea, we present a lazy version of the KTNS algorithm in the
next section.

3.2 A lazy version of the KTNS algorithm

The lazy version of KTNS (Lazy-KTNS for short) computes incrementally the
cost of a partial sequence and keeps track of the set of tools that can be reused
for free later in the sequence. The decision to keep an unnecessary tool on the
machine at each step is deferred until it eventually becomes required on a further
step. If the KTNS algorithm can be seen as a forward-looking greedy, the Lazy-
KTNS algorithm can be seen as a backward-looking one.

Lazy-KTNS algorithm uses a specific data structure — called FreeTools and
presented in Algorithm 2 — to collect the set of tools that can be used “for free”.
Using a tool from this set means deciding it has remained on the machine since
its last appearance in the partial sequence until the current time slot, as the
standard KTNS algorithm would have done.

The FreeTools data structure encodes cardinality constraints on the set of
active tools, coming from the limited capacity c of the machine. It is represented
as a sequence of sets of tools ⟨F1, . . . , Fsize⟩ with size < c. The generic Fk

represents the set of tools removed from M at a previous step when the capacity
slack was exactly k. Furthermore, the invariant on this sequence is that the sets
are pairwise disjoint, and the tools in Fk were set on the machine at a time slot
after the tools in F1, . . . , Fk−1. The implicit FreeTools semantic of the cardinality
constraints on the tools that can be re-used freely reads as the conjunction of
the following constraints:

– At most one tool from F1 can be used for free, and
– At most two tools from F1 ∪ F2 can be used for free,
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Algorithm 2: Class FreeTools
1 F[k] : set← ∅ , ∀ k ∈ [1..c− 1] ;
2 size← 0

3 Method contains(t: int): int
4 foreach k from 1 to size− 1 do
5 if t ∈ F[k] then
6 return k;

7 return −1;

8 Method add(k: int, free: set): int
9 F[k]← F[k] ∪ free ;

10 size← max(size, k+ 1) ;

11 Method remove(k: int, t: int): int
12 F[k]← F[k] \ {t} ;
13 F[k− 1]← F[k− 1] ∪ F[k] ;
14 foreach l from k to size− 1 do
15 F[l]← F[l+ 1] ;

16 F[size− 1]← ∅ ;
17 size← size− 1;

18 Method removeFrom(k: int): int
19 foreach l from k+ 1 to size− 2 do
20 F[k]← F[k] ∪ F[l] ;
21 F[l]← ∅ ;

22 size← k+ 1;

– . . .
– At most size tools from F1 ∪ · · · ∪ Fsize can be used for free.

To ensure that this property is maintained, a tool used for free must call the
method remove. When calling this method for a tool t present in Fk, the subse-
quent sets are left-shifted to reflect the update on the cardinality constraint, as
can be seen in the body of the remove method.

Algorithm 3 outlines the Lazy-KTNS algorithm. Similarly to its non-lazy
version described in Algorithm 1, Lazy-KTNS computes the optimal cost for a
fixed partial job sequence S. In addition, Lazy-KTNS makes heavy use of the
FreeTools data structure. The tools in t(i) \ t(i − 1) are the new ones to be
scheduled. Each such tool t can be used for free if it appears in FreeTools; if
not, it must incur a cost of 1. In case it appears in FreeTools, then FreeTools
must be updated to lazily decide to keep a tool previously on M from a past
job till step i. For example, suppose that we found it in Fk. Then, the slack is
reduced by 1 for all the jobs scheduled after. This amounts to shifting all the sets
after Fk by one position to the left since those tools were added afterward. This
is the operation remove in Algorithm 2. The tools that can be used later for free
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Algorithm 3: Evaluate a job sequence S using Lazy-KTNS
1 Function Lazy-KTNS

Input : S → a (partial) job sequence encoded as a list of integers
Output: cost → an integer encoding the cost of S
Data : next → a |J | × |S| matrix that keeps track of which tool is

needed first in the current sequence S
t1, t2 → support sets of integers used to encode subsets of tools

2 cost← |t(S[1])| ;
3 F ← new FreeTools() ;
4 for i from 2 to |S| do
5 new ← t(S[i]) \ t(S[i− 1]) ; // tools not present on the machine
6 for t ∈ new do
7 k ← F .contains(t) ;
8 if k > 0 then // can t be reused from previous jobs?
9 F .remove(k, t) ;

10 else
11 cost← cost+ 1 ;

12 slack ← c− |t(S[i])| ;
13 if slack > 0 then // slots available to the machine?
14 if slack < F .size then
15 F .removeFrom(slack) ;

16 if new ̸= ∅ then
17 F .add(slack, t(S[i− 1]) \ t(S[i])) ;

18 else
19 F .reset() ;

20 return cost ;

in F must still be added. The quantity slack denotes the number of remaining
slots c − |t(S[i])|. The tools that are not directly reused in t(S[i − 1]) \ t(S[i])
are the ones that can possibly remain set for later use. By calling add, those are
stored in the internal set Fslack of FreeTools to represent that slack of them
could have stayed set. Also, all the internal sets Fk with k > slack (if any) are
added to Fslack and then deleted by calling the method removeFrom.

The time complexity of the Lazy-KTNS algorithm for processing a partial
sequence of size |S| is O(|S| · c2). Specifically, for each new job, at most c new
tools are added. Each method of the FreeTools data structure executes in O(c),
assuming bitset representations for the internal sets of tools and a number of
tools that allows constant-time operations on the bitset operations. When the
Lazy-KTNS algorithm is implemented in Laporte et al.’s B&B algorithm in place
of the usual KTNS algorithm, the time complexity down a branch can be reduced
to O(n · c2) from O(n2 ·m) thanks to the reuse of the state of F.
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Example 5. Consider again the JS-TSP instance shown in Figure 1 and assume
that M has processed a partial sequence S = ⟨4, 2, 6⟩ and the next job is 5.
The current state of the FreeTools data structure is [{0, 6, 8}, {1, 4}, {}]. After
adding the job 5, as F contains the tool 6, it is taken for free, and all sets are
shifted by one to the left (line 9). So {0, 8} can no longer be taken for free. All
other tools induce a cost (line 11). Then, any tools that were previously on the
machine but are no longer there are added to F, as there is still an empty space
on the machine (line 17). The new current state of FreeTools is [{1, 3, 4}, {}, {}].

3.3 On the equivalence between states

FreeTools can help to characterize the equivalence between two partial sequences.

Theorem 1. Consider two non-empty partial sequences S1 and S2 such that:

1. S1 and S2 are defined on the same set of jobs (S1 is a permutation of S2),
2. their last job is identical, i.e., last(S1) = last(S2),
3. the Lazy-KTNS algorithm applied to these sequences results in an identical

FreeTools state,

then any sequence Stail on R = J \S1 = J \S2 induces the same cost to complete
S1 or S2.

Proof. Let i = |S1| = |S2|, the length of the sequences. Let Stail denote the
sequence completing R. By examining the implementation of Algorithm 3 and
assuming its correctness, we observe that the decisions taken by the algorithm
for the concatenated sequences S1 ·Stail and S2 ·Stail are identical starting from
index i+1. This fact holds because these decisions depend only on the previous
job S[i − 1] and the state of the free tools at that point. By assumption, both
S[i− 1] and the FreeTools state are the same for S1 and S2. Therefore, the cost
to complete either sequence is identical. ⊓⊔.

Example 6. Consider the JS-TSP instance shown in Figure 1. Let denote S1 =
⟨2, 6, 1⟩ and S2 = ⟨6, 2, 1⟩, two sets of jobs that M have already processed (in
this order of appearance). These two sets are defined on the same set of jobs, and
the last job is identical: 1. The FreeTools state for each one is [{3, 4, 5}, {}, {}].
Thus, the cost to complete either sequence is identical.

3.4 A graph search algorithm based on A*

The A* graph search algorithm [11] can be applied to solve instances of the
JS-TSP by using a state representation that includes the FreeTools data struc-
ture, the set of remaining jobs to be scheduled, and the last scheduled job. By
Theorem 1, equivalent partial sequences can be identified and merged, thereby
reducing redundant exploration of the search space. In this framework, each
state corresponds to a node in the graph, each arc is labeled with the job to
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Table 4: Dataset Properties.

Dataset A Dataset B
n {8, 9, 15, 20, 25} {10, 15}
m {15, 20, 25} {10, 20}
c {5, 10, 15, 20} {4, 5, 6, 7, 8, 10, 12}

min {2, 3, 5, 10, 15} {2}
max {5, 10, 15, 20} {4, 6}

be appended and its associated additional cost, and each path represents a se-
quence of scheduled jobs. The objective is to find the shortest path in this layered
graph, ending at a goal node that is reached when all jobs have been scheduled.
The admissible heuristic h(S) used by A* is the lower-bound z̃3. The cost-so-far
value g(S) represents the length (or cost) of the shortest path to the current
node. The A* algorithm systematically explores the search space by expanding
states in the order of their estimated total cost f(S) = g(S) + h(S). The first
complete solution encountered is guaranteed to be optimal. In our experiments,
we tested several anytime variants of A* that have been successfully applied to
other combinatorial optimization problems (see, for instance, [7,12,15]). These
variants include Iterative Beam Search (IBS) [14], Anytime Weighted A* (AWA)
[18], and Anytime Column Search (ACS) [17]. Additionally, we evaluated the de-
cision diagram-based B&B approach [3] and the DDO solver of [10]. However,
this direction was abandoned because the bounds obtained by merging states
were significantly weaker compared to the specialized bounds.

4 Computational experiments

In this section, we report on the results of applying the graph search algorithm
to two benchmark datasets. Dataset A is used to compare our approach with the
approach described in [13] as the dataset used in the article. Dataset B is used
to compare our approach with that of [5]. Table 4 summarizes the most impor-
tant characteristics of each dataset that may impact both the time complexity
and difficulty of solving the problem to optimality. In particular, an instance
is defined by n representing the number of jobs, m the number of tools, c the
capacity, and min and max, respectively, the minimum and maximum number
of tools contained in a job. Each instance of one of these datasets corresponds
to a specific combination of these parameters, but not all combinations exist in
the dataset, and 10 instances have the same combination.

The computational experiments reported in this section run an Intel(R)
Xeon(R) CPU E5-2687W with 128GB of RAM, with a timeout set to 3600
seconds. The implementation was done in Java and executed with Java 8. The
ILP model [5] is modeled in Mosel and solved with FICO Xpress v9.5.0. The
source code and instances are available4.

Our experiments were driven by several key questions:
4 https://github.com/emmalegrand/JS-TSP

https://github.com/emmalegrand/JS-TSP
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– What is the impact of the different lower bounds z̃1, z̃2, z̃3 (on the cost of
the remaining jobs) on the performance of a B&B algorithm that uses the
KTNS algorithm to compute the lower bound ẑ for the partial sequence?

– After selecting the best bound based on the previous answer, what is the
impact of replacing the KTNS algorithm with the Lazy-KTNS algorithm on
the execution time of the B&B algorithm?

– What is the impact of using an A* like graph search algorithm instead of a
tree search?

– How do the B&B algorithm with Lazy-KTNS and the graph search algo-
rithms compare to the state-of-the-art ILP formulation?

In the next subsections, we address each of these questions.

4.1 Testing the lower bounds

This experiment explores the impact of the lower bounds z̃1, z̃2, and z̃3 on the
performance of a B&B algorithm that uses the KTNS algorithm to compute the
lower bound ẑ for a partial sequence. The implementation using max(z̃1, z̃2) repli-
cates Laporte et al.’s B&B algorithm [13]. In this test, we considered instances
with a maximum of 15 jobs and focused on the time required to solve them
optimally. In Figure 3, we observe that the performance of the B&B algorithm
based on lower bound z̃3 overcomes the others. The algorithm can optimally
solve 100% of the instances with up to 15 jobs in at most 3600 seconds. Lower
bound z̃1 also achieves decent results but cannot reach 100%. The second lower
bound, z̃2, is not strong enough to prune a significant number of nodes in the
tree, thus failing to solve around 30% of instances within the time limit. Never-
theless, in some cases, it proves stronger than z̃1, which experimentally supports
the idea of using the maximum of the two lower bounds as suggested in [13].
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Fig. 5: Solved instances on dataset A re-
garding the time with n = {8, 9, 15}.
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4.2 Lazy-KTNS algorithm vs KTNS algorithm

Recall from Section 3 that the complexity of Lazy-KTNS algorithm, O(n · c2)
is lower than O(n2 ·m) because, in general, c2 is less or equal than n ·m. This
experiment proposes to compare KTNS and the Lazy-KTNS to compute the
lower-bound ẑ on the partial sequence while using the lower bound z̃3 for the
remaining jobs. The search spaces are thus identical; only the time spent in each
node can vary. As can be observed on the right of Figure 4 illustrating the time
to find and prove the optimal solution for each instance with the two versions,
replacing KTNS with its lazy version speeds up the execution time for most of
the instances, and up to an order of magnitude for the larger values of n.

4.3 B&B vs graph search

As explained in Theorem 1, two non-empty sequences S1 and S2 can lead to
the same state information. Therefore, graph search, which avoids recomputing
similar states, can be used instead of a traditional tree search. This experiment
compares our best B&B tree search, denoted as the Lazy-KTNS algorithm, with
various A* graph search variants: the standard A* [11], Anytime Column Search
(ACS) [17], Iterative Beam Search (IBS) [14], and Anytime Weighted A* (AWA)
[18]. All these versions utilize the lower bound z̃3 for the remaining jobs.

As shown in Figure 5 and Figure 6, Lazy-KTNS takes longer to find and
prove the optimal solution, compared to its graph search alternatives. This is
especially visible for larger instances in Figure 6, where Lazy-KTNS solves only
60% of the instances, while A* and ACS solve 80-90% of the instances. Figure 7
compares the number of explored nodes for each instance by Lazy-KTNS and
ACS. It is easy to observe that the number of nodes explored in ACS is lower than
in B&B for most instances. These results highlight that the gain from employing
a state-caching strategy to avoid exploring similar states can be substantial.
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4.4 Comparison with ILP formulations

In this final experiment, we compare the different approaches with the best
ILP formulation from [5]. As expected, and consistent with the findings in [5],
Figure 8 demonstrates that the ILP formulation struggles to solve instances with
15 jobs within the 3600 second timeout. In contrast, the proposed approaches
successfully solve these instances, regardless of the search algorithm used.

5 Conclusion

In this article, we proposed a novel approach for solving the JS-TSP. Our contri-
butions include introducing a new family of lower bounds, denoted as z̃3, which
are provably tighter than existing bounds, and the development of the Lazy-
KTNS algorithm, a computationally efficient variant of the KTNS algorithm.
Additionally, we demonstrated the advantages of reformulating the traditional
tree-based B&B algorithm into a graph search problem, leveraging the state-
caching capabilities of modern search algorithms such as A* and its anytime
variants. Our source code is publicly available, providing reproducible experi-
ments for anyone interested in comparing their approach with ours.

For future work, we aim to explore alternative instantiations of the lower
bound z̃3 and compare them with the greedy one based on spanning tree con-
struction. Additionally, we plan to investigate how a constraint programming
solver performs on this problem and whether global constraints could be used or
designed to solve it more efficiently. We believe the KTNS strategy could inspire
strong constraint programming models for the JS-TSP.
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