
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

ICLF: An Immersive Code Learning Framework based on Git for
Teaching and Evaluating Student Programming Projects

Anonymous Author(s)

Abstract
Programming projects are essential in computer science educa-
tion for bridging theory with practice and introducing students to
tools like Git, IDEs, and debuggers. However, designing and evalu-
ating these projects—especially in Massive Open Online Courses
(MOOCs)—can be challenging. We propose the Immersive Code
Learning Framework (ICLF), a scalable Git-based organizational
pipeline for managing and evaluating student programming project.
Students begin with an existing code base, a practice that is crucial
for mirroring real-world software development. Students then itera-
tively complete tasks that pass predefined tests. The instructor only
manages a hidden parent repository containing solutions, which
is used to generate an intermediate public repository with these
solutions removed via a templating system. Students are invited col-
laborators on private forks of this intermediate repository, possibly
updated throughout the semester whenever the teacher changes
the parent repository. This approach reduces grading platform de-
pendency, supports automated feedback, and allows the project
to evolve without disrupting student work. Successfully tested
over several years, including in an edX MOOC, this organizational
pipeline provides transparent evaluation, plagiarism detection, and
continuous progress tracking for each student.

CCS Concepts
• Social and professional topics → Computing education; •
Software and its engineering → Software configuration manage-
ment and version control systems.

Keywords
project, teaching, test-driven development, grade, java, git, extreme
code immersion

ACM Reference Format:
Anonymous Author(s). 2018. ICLF: An Immersive Code Learning Framework
based on Git for Teaching and Evaluating Student Programming Projects.
In Proceedings of Make sure to enter the correct conference title from your
rights confirmation emai (Conference acronym ’XX). ACM, New York, NY,
USA, 7 pages. https://doi.org/XXXXXXX.XXXXXXX

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
Conference acronym ’XX, June 03–05, 2018, Woodstock, NY
© 2018 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-XXXX-X/18/06
https://doi.org/XXXXXXX.XXXXXXX

1 Introduction
Programming projects are a fundamental component of students’
education to bridge theoretical knowledge with practical applica-
tions. Ideally during programming projects the students should also
acquire a set important skills for a computer scientist like the ability
to write clean code, test and debug it, integrate into an existing
code bases, and collaborate with others using version controls sys-
tems. Unfortunately, many computer science programs still focus
on theory or small projects starting from scratch, leaving graduates
ill-equipped to work directly on more complex software projects.

Designing high-quality implementation projects and evaluat-
ing them effectively remains a significant challenge for educators,
particularly in contexts such as Massive Open Online Courses
(MOOCs), where a centralized manual correction is impractical.

Our motivation question is: How can we effectively teach students
to work with large, real-world codebases while providing transpar-
ent, scalable, and automated evaluation in programming courses,
particularly in contexts like MOOCs?

To address the question we propose the Immersive Code Learn-
ing Framework (ICLF) built around Git for teaching and evaluating
student programming projects. Instead of starting from scratch,
students are placed in a scenario mirroring real-world software
development. Every student is invited as a collaborator on a git
repository already containing code as a starting point. This is the
immersive aspect, where students engage with an existing code
base rather than starting a project from scratch. Students are then
required to iteratively modify and extend this code base, complet-
ing tasks designed to meet predefined and graded unit tests. The
progress is thus continuously assessed, with students receiving
feedback on their performance after each submission.

As illustrated on Figure 1, the instructor owns the students’ repos-
itories, which are private forks from another intermediate public
repository that is itself derived from a hidden parent repository con-
taining the original source code with solutions. The instructor only
pushes changes to this parent repository. Whenever the instructor
makes a push to the parent directly, the solutions are removed to
generate the intermediate repository using a templating system
embedded in the source code comments. Students are then invited
to pull the updates from the intermediate repository to ensure their
source code remains up-to-date.

ICLF minimizes the instructor’s dependency on a grading plat-
form, ensuring that the code provided to students is well tested,
functional, and the project remains feasible. Additionally, it allows
instructors to dynamically evolve the project by adding tests or fix-
ing bugs throughout the semester, even as students work on their
initial tasks. The approach supports automated grading, plagia-
rism detection, and detailed tracking of individual progress without
disrupting students’ workflow.

This methodology was successfully tested over several years,
including in an edX MOOC. Anonymous evaluations of our courses

1

https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX


117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anon.

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

Template Repository
Owner: Teacher

Public

Parent Repository
Owner: Teacher

Private

Student 1 Repository
Owner: Teacher

Collaborator: Student 1
Private

Student n Repository
Owner: Teacher

Collaborator: Student n
Private

generated
through
github
actions

on demand
fork, created
by teacher

scripts

...

Figure 1: Set of repositories involved

highlight that students appreciate this teaching process for its struc-
tured and transparent evaluation approach. They value the flexibil-
ity to run tests locally and, when confident in their code, to validate
their progress within the secure grading environment.

ICLF is especially suitable for teaching related to systems devel-
opment. This includes topics such as operating system development,
compiler design, optimization, machine learning libraries, and more.

Our contribution is a detailed explanation of the framework. We
also provide a small complete open-source instantiation of it for
a java project so that anyone interested can reuse all the related
scripts and source code. We share our experience at using ICLF in
two courses, including a MOOC.

Section 2, gives the related work. Section 3 gives a comprehen-
sive explanation of the architecture, covering both functional and
architectural aspects from the perspectives of students and teach-
ers. Section 4 then describes how the framework is used to grade
exercises within a secured environment. Additionally, this section
features a detailed "hello-world" open-source example of the frame-
work using a Java library tailored for precise assessment of student
code. In the final section 5, we discuss our experiences using ICLF
across various courses, including a MOOC on edX. This section also
provides insights into how students engage with the framework.

2 Related Work
Peer review in computer science education offers significant bene-
fits for both students and educators [7]. Regarding grading, students
can be evaluated based on their peers’ assessments of their code.
However, peer review alone has limitations, such as students strug-
gling to determine whether their work meets expected goals and
the delay in receiving feedback. These limitations are addressed
by ICLF. In our view, peer review can serve as a complementary
approach to ICLF.

In Inquiry-Based Learning [9] learners actively engage through
questioning, information gathering, and solution exploration. The
goal is to encourage problem-solving skills. One such an approach
is the so called creative problem solving teaching method [12] used
for a MOOC on discrete optimization. In this approach, students
are challenged to solve problems using any means necessary to
achieve the desired outcome. Our approach differs somewhat, as
students are tasked with integrating into an existing source code

simulating the experience of joining a project in progress but, our
approach is not mutually exclusive.

There are also similarities between our teaching framework
and the one of Extreme Apprenticeship (XA) [13]. XA also allow
students to run and execute tests locally as often as they wish. XA
aims to guide students in using a working process similar to that
of professional programmers. Our method mainly differs in that
students interact with exercises through a git repository, rather
than a plugin specifically developed in an IDE. Also, XA does not
automatically generate a template repository from the solution of
the teacher and therefore need the so-called "Alpha-Beta-Open"
release process to verify test thoroughness that our continuous
deployment pipeline automates completely.

GitHub Classroom is a tool offered by GitHub sharing some
similarity with our teaching framework and to some extent could
be used to instantiate our framework. Students can join a classroom
and work within a skeleton project. However, it does not allow
them to collect automatically get the grades resulting from testing.
Additionally, there is no guarantee that the students have kept the
provided unit tests intact, resulting in additional work from the
teacher to validate the grades.

Web-CAT [4] is a Web tool for automated testing and grading
of programming assignments. It is not Git-centric and requires
students to upload their files manually or use a dedicated IDE plugin
for submission.WhileWeb-CAT is easier to use at the bachelor level,
it is less aligned with the workflows of a professional development
project compared to ICLF.

Autograder is a framework used to grade Java exercises [6].
However, unlike JavaGrader, this tool does not rely on Junit5 [2]
standard testing library. Other graders exist for Java using Junit
[5, 8], but these web-based tools are targeted for bachelors students.

3 Description of the framework
We explain in this section the teachers and students main interac-
tions with the system. First, we discuss how students enroll in a
course and begin working as a collaborator on a private fork of a
intermediate template repository. Next, we explain how this public
intermediate template repository is automatically generated from
the private teacher parent repository using an operation called
"stripping" removing and replacing parts of the source code.

We use GitHub as an example of a code hosting platform for the
remainder of this paper; other similar platforms can be used, such
as GitLab or Bitbucket. The only requirement for those platforms
is to provide a rest API enabling users to create and interact with
repositories [1] as well as a continuous delivery pipeline such as
GitHub Actions to automate the execution of the scripts.

3.1 Enrollment
From the student’s perspective1, enrolling in the course is simple
- they only need to enter their GitHub username on a grading
platform2 and accept the invitation to collaborate on a private Git
repository. The git repository the student receives is a private (i.e.
not accessible to others, excepting the teaching staff, the owner of

1The description can easily be extended for groups of students working a same project
and sharing the source code.
2(INGInious [3] in our case).

2



233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

ICLF: An Immersive Code Learning Framework based on Git for Teaching and Evaluating Student Programming ProjectsConference acronym ’XX, June 03–05, 2018, Woodstock, NY

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

all the repositories) fork of template project, created by a GitHub bot
account, that contains gaps representing missing implementations
which they will need to complete over the course. By preventing
students from forking the template themselves and keeping the
teacher as the owner, the teaching staff avoids solution sharing and
ensures that students’ repositories remain private. The student is
then ready to work and commit on its repository, filling the gaps
and passing the graded unit tests. Figure 2 provides a sequence
diagram of this process.

This methodology enables the teaching team to access all activi-
ties performed by the students on the repository. Since all reposi-
tories belong to the GitHub bot account owned by the teacher, it
allows to retrieve all repositories and perform various tasks on them.
This includes collecting analytics, check potential plagiarism issues
as well as manually reviewing the code submitted by students.

Student X Grading System Template Repo

Register for
enrollment

Create new
repository for X

Retrieve template
content

Initialize repo
with template

Invite to collaborate
on new repo

Figure 2: Enrollment of a new student.

3.2 Student interactions on the repository
The work performed by a student on its repository consists of filling
the missing implementations, in an adequate order communicated
by the teaching staff to the students. Unit tests are provided for the
missing implementations, allowing students to assess the correct-
ness of their code locally. Whenever an implementation has been
successfully written by the student, the trainee can commit and
push the changes on its repository. This is the only way for the
student to test it fully, on the remote grading platform (we describe
this process in section 4). This has the benefit of forcing the student
to interact with version control systems.

Moreover, the student must use git to interact with the tem-
plate repository as well. Indeed, the teacher can possibly update
the template to fix a potential issue or to add another exercise to
complete during the semester. In such cases, the student must run
git commands to integrate the changes from the template within
its own project. This results in merge operations, after which the
student repository is up-to-date with respect to the template.

3.3 Teacher update
To generate the template repository, a teacher must have a project
containing all solutions, with specific parts marked by delimiters to

indicate which code needs to be stripped. The stripping operation
involves removing the code written between these delimiters. An
example of this operation is illustrated in Figure 3. All the code
between BEGIN STRIP and END STRIP comments disappears in
the template. The code after STUDENT is injected to ensure that
the student receives a code that compiles. The teachers can use any
such delimiters in their project, which is minimally intrusive and
ensures that they have a clear view of the level of difficulty of the
exercises proposed to students.

public int increment(int x) {

// STUDENT throw new

RuntimeException ("Not implemented ");

// BEGIN STRIP

return x + 1;

// END STRIP

}

public int increment(int x) {

throw new RuntimeException("Not

implemented");

}

Figure 3: Example of a strip operation on a Java source file.
The code on the top is the teacher (solution) implementa-
tion. The code below corresponds to the public template. It
is generated automatically by parsing the solution file and
processing the strip tokens. We rely on a small utility tool
for this: https://pypi.org/project/amanda/

The teacher can indicate which parts of the source code need to
be stripped by adding tokens to the relevant files in the solution.
This allows the teacher to have a clear overview of the gaps that
need to be filled by the students. The combination of all the stripped
files then creates the template repository, with gaps for the missing
implementations that students must complete.

The continuous deployment capabilities of platforms like GitHub
Actions or Gitlab CI/CD, enable to automate entirely the genera-
tion and update of the template repository. Upon a push to the
solution repository by the teacher, a script is executed to strip the
solution and create a new version of the template repository. The
updated version is then pushed to the template repository, making
it instantly accessible to all users. Figure 4 illustrates this auto-
mated process. The relation between the teacher, the template and
a student repository is represented on Figure 5.

The teacher can also utilize the same approach to selectively hide
certain unit tests from students. This feature enables a portion of
the tests to be visible in the template, while keeping the rest hidden.
The ability to hide tests can be useful in situations where a few
simple tests are made available only for students to understand the
expected behavior, while the remaining tests are hidden to prevent
brute-forcing and encourage students to develop their own tests.
One can also keep the tests consistent between the teacher and
the template repository to ensure a fully transparent evaluation of
student projects.

3

https://pypi.org/project/amanda/


349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anon.

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

Teacher Repo GitHub Action Template Repo

Push triggers
workflow

Strip repo

Run tests

Clone
template repo

Push
stripped content

Abort workflow

alt [Test success]

[Test fail]

Figure 4: The update of the template repository. A GitHub
action is triggered at each push on the solution repository,
stripping the code and pushing it to the template project.

main
test

config

Teacher
repository
(PVT)

stripped main

stripped test

config

Template
repository
(PUB)

stripped main

stripped test

config

Student
repository
(PVT)

strip

strip

copy

fork

Figure 5: Creation of the template repository through strip-
ping and of the student repository through forking. Only the
template repository is public, the teacher and student ones
are private.

4 Grading
The unit tests in a project should provide a way to determine a stu-
dent’s grade when executed. However, certain modules in a project
may be more crucial than others, and teachers need to be able to
assign weights to relevant tests accordingly. To address this, we
use JavaGrader, a Junit5 extension that we have developed that
enables Java unit tests to output a graded report. Similar function-
alities could be achieved with other programming languages such
as Python or C++. We also discuss how to set up an automated
grading system that securely runs tests in a controlled environ-
ment—ensuring the original tests are execute, guaranteeing the
validity of the final grade.

4.1 Grading the tests
To benefit from features introduced by Junit5 [2] (such as para-
metric testing, parallel execution, tagging and filtering of the tests,
etc.), we rely on an extension called JavaGrader. This extension
adds additional functionalities to the tests in the form of annota-
tions, similarly to python decorators. Here are the most important
annotations provided by the extension:

• Grade is the core annotation from JavaGrader. It says that
a unit test is graded and might contain optional parameters
such as a maximum run time or a weight. The maximum
run time can be specified as either CPU timeout (how much
time the current thread has been spent running the test) or
as a wall-clock timeout (how much time has passed since
the beginning of the test).

• GradeFeedback can be used to provide an additional mes-
sage depending on the outcome of a unit test.

• Forbid prevents the use of a given library when executing
the test. This is useful for exercises where a student is asked
to write code without relying on a specific library or data
structure. It is implemented by overriding the class loader
from the thread running the test, ensuring that all classes
loaded by the student are allowed.

An example usage can be found in Listing 1.More annotations are
provided in the library. They cover some cases, such as conditional
tests, that are only run if the previous was successful. This can be
used for testing the time complexity of an algorithm, which should
only be run if previous tests have first validated the correctness of
the program. JavaGrader can be used alongside other extensions
when executing the test suite.

@Grade

public class MyTests {

@Test

@Grade(value = 5, cpuTimeout = 1)

@Forbid ("java.lang.Thread ")

void mytest1 () {

//this works

something ();

}

@Test

@Grade(value = 3)

@GradeFeedback(message = "You forgot to

consider this particular case

[...]" , on = FAIL)

void mytest2 () {

//this doesn 't

somethingElse ();

}

}

Listing 1: Transforming unit tests into graded tests by using
JavaGrader. mytest1 benefits from the forbidding of the
java.lang.Thread library, and adds a cpu timeout on the test.
Indeed, the cpu timeout would have been meaningless if the
student run its code in a spawned thread, as it is not related
to the initial thread running the test.

4.2 Student self-assessment
As a fraction of tests from the teachers are provided in the template
(and thus in the student) repository, the trainees can use them to
their advantage. They can locally run (a part of) the graded tests, and
obtain an immediate feedback, along with debugging possibilities,

4



465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

ICLF: An Immersive Code Learning Framework based on Git for Teaching and Evaluating Student Programming ProjectsConference acronym ’XX, June 03–05, 2018, Woodstock, NY

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

Grading
System Github

Grading
project

Retrieve repos
(student, template, teacher)

Check if student
repo is up to date

alt [not up to date]

Show warning and
integration commands

Archive marked files
Put student repo content

Replace some files with teacher’s ones

Remove possible sensitive data
(SSH keys, tokens, ...)

Compile project

alt [compilation fails]

Stop and show error

[compilation succeeds]

Test student code and store grade

Figure 6: Grading a task within a grading system. The feed-
back is constructed by the grading system and contains the
information related to the grading and notes for the students.

directly on their computer, even when offline. The students are
then able to iterate more efficiently on their code; this reduces both
the overall effort of the code-evaluate-fix loop and the computation
load on the online grading system. More advanced tests, requiring
the usage of a secret or specific computing capabilities not present
on trainees’ computers, can be stripped and made available on the
online grading system only (as detailed in the next section).

4.3 Running the tests in a secure environment
Truly assessing the grades from the students requires particular
caution. Simply retrieving a student repository and running its tests
does not guarantee that their output is valid: nothing prevents a
student from pushing a modified version of the tests. Furthermore,
it might be a good practice to let the students modify the tests: they
should be free of adding more tests cases if they wish, to convince
themselves of the correctness of their code.

Figure 6 depicts the sequence diagram for grading a task, with
the key steps outlined next.

(1) The student, template and teacher repositories are retrieved.
(2) It is ensured that the last commit from the template appears

within the student repository. If not, a warning will be given
as feedback letting the student know that the repository

need to be up-to date to be graded. Some commands are
prompted to help the student integrate the changes from
the template.

(3) Some marked files and directories from the student reposi-
tory are archived. The archived files can be used for further
analysis by the teaching team such as plagiarism detection
between students with a tool like JPlag [10].

(4) The grading project is prepared by replacing files or direc-
tories from the student to put the ones from the teacher
instead (typically the tests, including hidden ones, and con-
figuration but possibly additional files such as a sensitive
dataset that must be hidden to students).

(5) The sensible files that are mandatory for cloning the repos-
itories are removed (ssh keys, token files, etc.)

(6) The grading project is compiled. Failure to compile them
stops the evaluation with an error message corresponding
to the error printed by the compiler.

(7) Test the student code and give feedback to the student. The
grades are stored.

To prevent any memory corruption and fully automate the grading,
we use a grading platform such as INGInious [3]3. INGInious essen-
tially run these steps in a jailed environment ensuring, among other
things, that the code cannot interact with anything other than the
grader, cannot access the internet, and cannot read or write files on
the file system except where they are specifically allowed to. This
platform is also used with a special task for creating the repository,
using the methodology presented in section 3.1.

The feedback given back to the student in step 7 consists of the
grade for the task, and any possible information proving useful
feedback to the student. In the case of JavaGrader that we use, an
example output related to the tests from Listing 1, is presented on
Figure 7.

Figure 7: Output of the tests from Listing 1. As the class
MyTests is also annotated with @Grade without specifying
optional parameters, the maximum grade is 1. This value can
be overridden by changing the class annotation.

Setting up a grading task can be done in a matter of minutes.
Except for the homework statement, only a few parts need to change
between two grading tasks. The procedure remains the same across
the tasks for one course, with the exception of steps 3 and 4, where
different files or directory can be specified, and for the tests that
needs to be run.

As an example, we provide a detailed "hello-world" open-source
implementation of the whole pipeline. The example is accessible

3Other plateforms such as GradeScope [11] could also be used.

5



581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anon.

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

through https://inginious.org/course/iclf-example. It uses INGIn-
ious as the grading system. The related repositories can be found
at https://github.com/OneAnonymizedUser/teacher-repository for
the teacher repository and at https://github.com/OneAnonymizedUser/
template-repository for the template. For demonstrating purposes,
the teacher repository is public, but it should remain private in a
real scenario.

5 Use cases
The teaching framework presented in this paper was successfully
used in two courses for more that three years: A Discrete Optimiza-
tion Course and a Constraint Programming Course on edX.

5.1 A Discrete Optimization Course
This course focuses on advanced algorithms for discrete optimiza-
tion, with theoretical content similar to that of [12]. Each task is
related to a different optimization technique, one of these is the
well-known branch-and-bound method. Students are provided with
code for cumbersome tasks such as instance parsing, along with an
incomplete skeleton of a generic algorithm (e.g., branch-and-bound)
that they need to complete and then instantiate on a problem (e.g.,
the traveling salesman problem). Some of the graded tests are hid-
den from the students, primarily the most challenging instances,
making it difficult to achieve the maximum grade, in line with the
method introduced in [12]. The complete teaching framework, as
described in this paper, was utilized over three years, with about
100 students each year.

Each year, our teaching team prepared the projects just in time.
As a result, students had to pull the next project, which appeared
as a new package in the template source code, every two weeks.
Anonymous feedback from students demonstrated their apprecia-
tion for the teaching framework and course format.

As the framework enables the collection of global statistics, we
computed the average number of commits over time by the students
in a typical year, as shown in Figure 8 to get insights on how and
when students interact with the framework. We observe that, as
expected, students tend to work closer to deadlines, with a peak
in the number of commits before each due date. Interestingly we
observed that not all commits correspond to a grading request,
indicating that students prefer to assess their code locally before
submitting their work.

5.2 MOOC on Constraint Programming on edX
We have taught a Constraint Programming (CP) course on edX for
three years to an audience of approximately 300 students per year
(100 students from our university, and 200 online external students)
using the proposed methodology4. Most university courses on con-
straint programming teach it at the user level of a given library.
In contrast, ICLF enabled us to have students take charge of the
development of an entire constraint programming solver library.
For students, a basic constraint programming solver is a fairly large
piece of software, consisting of around 10,000 lines of code, exclud-
ing tests. The sequence of proposed tasks starts at the lower levels
of the solver and gradually moves toward applications, ensuring
there is no “dark magic” for students from beginning to end. There
4Inginious enables the Learning Tool Interoperability (LTI) connection with edX

0 20 40 60 80
Days since course started

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

N
um

be
r o

f c
om

m
its

 p
er

 d
ay

 p
er

 re
po

si
to

ry

P
ro

je
ct

 d
ea

dl
in

e

P
ro

je
ct

 d
ea

dl
in

e

P
ro

je
ct

 d
ea

dl
in

e

P
ro

je
ct

 d
ea

dl
in

e

P
ro

je
ct

 d
ea

dl
in

e

P
ro

je
ct

 d
ea

dl
in

e

type
submitted
total

Figure 8: Average number of commits (per student-
repository) over time for the Discrete Optimization course.
We report the total number of commits and the number of
commits that were submitted to the grading system. The
commits related to merges from the template, fetching the
new projects instructions, are omitted.

are no fixed deadlines for the projects, but students are strongly
encouraged to stay up-to-date with the exercises, as some require
code and algorithms from earlier projects to complete. Although
not included here due to space constraints, we collected data on
the commits made by students each day during the semester. We
observed a higher number of commits on Fridays, corresponding to
on-site practice sessions organized at our university. Additionally,
we noted that the number of commits gradually increased as the
semester progressed, peaking as the final deadline approached.

6 Conclusion
Wehave presented the Immersive Code Learning Framework (ICLF),
a scalable, and effective approach based on git to teaching and grad-
ing programming projects. By placing students in an environment
with pre-existing codebases, the framework simulated real-world
software development scenarios, fostering skills such as debugging,
version control, and iterative development.

The framework’s ability to provide instant feedback, automate
grading, and dynamically evolve projects was successfully demon-
strated in diverse educational settings, including a Discrete Opti-
mization course and a Constraint Programming MOOC. Anony-
mous evaluations from students underscored the value of ICLF in
offering a structured, transparent, and rewarding learning process.

References
[1] 2023. GitHub REST API documentation - GitHub Docs. https://docs.github.

com/en/rest [Online; accessed 22. Mar. 2023].
[2] 2023. JUnit 5. https://junit.org/junit5 [Online; accessed 21. Mar. 2023].
[3] Guillaume Derval, Anthony Gego, Pierre Reinbold, Benjamin Frantzen, and Peter

Van Roy. 2015. Automatic grading of programming exercises in a MOOC using
the INGInious platform. European Stakeholder Summit on experiences and best
practices in and around MOOCs (EMOOCS’15) (2015), 86–91.

[4] Stephen H Edwards and Manuel A Perez-Quinones. 2008. Web-CAT: auto-
matically grading programming assignments. In Proceedings of the 13th annual
conference on Innovation and technology in computer science education. 328–328.

[5] Olly Gotel, Christelle Scharff, and Andy Wildenberg. 2007. Extending and con-
tributing to an open source web-based system for the assessment of programming
problems. In Proceedings of the 5th international symposium on Principles and
practice of programming in Java. 3–12.

6

https://inginious.org/course/iclf-example
https://github.com/OneAnonymizedUser/teacher-repository
https://github.com/OneAnonymizedUser/template-repository
https://github.com/OneAnonymizedUser/template-repository
https://docs.github.com/en/rest
https://docs.github.com/en/rest
https://junit.org/junit5


697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

ICLF: An Immersive Code Learning Framework based on Git for Teaching and Evaluating Student Programming ProjectsConference acronym ’XX, June 03–05, 2018, Woodstock, NY

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

[6] Michael T Helmick. 2007. Interface-based programming assignments and au-
tomatic grading of java programs. In Proceedings of the 12th annual SIGCSE
conference on Innovation and technology in computer science education. 63–67.

[7] Theresia Devi Indriasari, Andrew Luxton-Reilly, and Paul Denny. 2020. A review
of peer code review in higher education. ACM Transactions on Computing
Education (TOCE) 20, 3 (2020), 1–25.

[8] Ashrita Kunchala and Maneesh Gunnala Ranga Rao. 2016. Java auto grader.
(2016).

[9] Margus Pedaste, Mario Mäeots, Leo A Siiman, Ton De Jong, Siswa AN Van Riesen,
Ellen T Kamp, Constantinos C Manoli, Zacharias C Zacharia, and Eleftheria
Tsourlidaki. 2015. Phases of inquiry-based learning: Definitions and the inquiry
cycle. Educational research review 14 (2015), 47–61.

[10] Lutz Prechelt, Guido Malpohl, and Michael Philippsen. 2000. JPlag: Finding
plagiarisms among a set of programs. Univ., Fak. für Informatik.

[11] Arjun Singh, Sergey Karayev, Kevin Gutowski, and Pieter Abbeel. 2017. Grade-
scope: a fast, flexible, and fair system for scalable assessment of handwritten
work. In Proceedings of the fourth (2017) acm conference on learning@ scale. 81–88.

[12] Pascal Van Hentenryck and Carleton Coffrin. 2014. Teaching creative problem
solving in a MOOC. In Proceedings of the 45th ACM technical symposium on
Computer science education. 677–682.

[13] Arto Vihavainen, Matti Luukkainen, and Jaakko Kurhila. 2012. Multi-faceted
support for MOOC in programming. In Proceedings of the 13th annual conference
on Information technology education. 171–176.

7


	Abstract
	1 Introduction
	2 Related Work
	3 Description of the framework
	3.1 Enrollment
	3.2 Student interactions on the repository
	3.3 Teacher update

	4 Grading
	4.1 Grading the tests
	4.2 Student self-assessment
	4.3 Running the tests in a secure environment

	5 Use cases
	5.1 A Discrete Optimization Course
	5.2 MOOC on Constraint Programming on edX

	6 Conclusion
	References

