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Abstract

Constraint Programming (CP) is an optimization paradigm well suited for

solving Vehicle Routing Problems (VRPs), thanks to its declarative frame-

work. Yet, despite this relative ease of modeling, CP solvers tend to make

poor branching decisions while searching for optimal solutions on a VRP.

This, combinedwith the difficulty in dealingwith optional visits in someVRPs

variants, hinders the performance of CP solvers on such problems.

This thesis proposes twoways to strengthen the CP solving of VRPs. First,

several heuristics are introduced that automate more informed decisions (e.g.
nearest neighbor selection) within the CP search, which discover better VRPs

solutions more quickly. Second, insertion sequence variables introduced in

previous work are modified, formalized, and enhanced. Sequence variables

allow easy handling of optional visits and support efficient heuristic strate-

gies based on insertions into existing paths, both of which are valuable for

efficient solving of VRPs. The proposed modifications further improve their

performance, simplify the modeling and implementation of custom heuris-

tics, and clarify their domain and consistency properties. On benchmarks

such as the Dial-A-Ride Problem we approach the best-known objective val-

ues, and on the Traveling Salesman Problem with Time Windows we match

them; demonstrating that CP performance can be greatly improved by incor-

porating our contributions.

iii





Acknowledgments

Completing a PhD is no easy task, and it would have been impossible without

the encouragement and help of many people, often in ways they may not

even realize. Whether you were unraveling technical questions with me or

helping me unwind through shared moments of fun, each of you lightened

the journey.

First, I owe my deepest gratitude to my parents for their unwavering sup-

port throughout my studies. My heartfelt thanks also go to my siblings Mar-

tin, Zoé, Guillaume and Sacha, for their encouragement and patience, even

when I launched into complicated computer-science explanations at family

gatherings.

I am equally grateful to my friends and my colleagues from the INGI de-

partment. Especially my teammates from the Artificial Intelligence and Algo-

rithm group: Xavier, Vianney, Alexandre, Guillaume, Benoît, Lucile, Damien

and Emma, who helped me to solve stubborn technical problems and refine

various graphic designs. The AsCII team deserves special mention for con-

stantly fostering a cheerful atmosphere, and Vanessa for not only being the

soul of the department but also regularly trouncing me at belote.

My appreciation extends to Alexander, Alice and Achille, who endured

my quirks both at work and in our shared house. Luckily for all of us, my

friends Myrtille, Réglisse, Célia, Laura, Louis D., Louis P., Margot, Diego,

Océane and Elodie were also there to keep spirits high.

Finally, I want to thank Peter, Yves, Pascal and Paul for reading this thesis

and assessing its merit. Above all, I thank Pierre, my thesis supervisor, whose

guidance has been indispensable to my growth as a computer scientist and

researcher.

v





Contents

Abstract i

Acknowledgments v

Table of Contents vii

1 Introduction 1
1.1 Research Goals . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.4 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Background 5
2.1 Vehicle Routing Problems . . . . . . . . . . . . . . . . . . . . . 5

2.1.1 Traveling Salesman Problem - TSP . . . . . . . . . . . 6

2.1.2 Extending the TSP . . . . . . . . . . . . . . . . . . . . 7

2.2 Constraint Programming . . . . . . . . . . . . . . . . . . . . . 8

2.2.1 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2.1.1 Variable . . . . . . . . . . . . . . . . . . . . 8

2.2.1.2 Domain . . . . . . . . . . . . . . . . . . . . . 10

2.2.1.3 Constraint . . . . . . . . . . . . . . . . . . . 16

2.2.1.4 Optimization Problems . . . . . . . . . . . . 21

2.2.2 Search . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.2.2.1 Branching Scheme . . . . . . . . . . . . . . 21

2.2.2.2 Search Exploration Principles . . . . . . . . 23

2.2.2.3 Variable Selection . . . . . . . . . . . . . . . 24

2.2.2.4 Value Selection . . . . . . . . . . . . . . . . 26

2.2.2.5 Miscellaneous . . . . . . . . . . . . . . . . . 28

2.3 Large Neighborhood Search . . . . . . . . . . . . . . . . . . . 29

2.4 Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.4.1 Black-Box Search Heuristics . . . . . . . . . . . . . . . 31

2.4.2 Insertions and Large Neighborhood Search . . . . . . 32

2.4.3 Optional Visits . . . . . . . . . . . . . . . . . . . . . . 34

2.4.4 Research Questions . . . . . . . . . . . . . . . . . . . . 34

vii



viii Contents

3 Value Heuristics 37
3.1 Existing work: Bound-Impact Value Search . . . . . . . . . . . 39

3.2 Reducing Bound-Impact Value Search Cost . . . . . . . . . . . 39

3.2.1 Restricted Fixpoint . . . . . . . . . . . . . . . . . . . . 40

3.2.1.1 Implementation . . . . . . . . . . . . . . . . 40

3.2.2 Reverse Look-Ahead . . . . . . . . . . . . . . . . . . . 43

3.3 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.3.1 Fundamental Problems . . . . . . . . . . . . . . . . . . 47

3.3.2 XCSP
3

. . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.4 Extending to Satisfaction Problems . . . . . . . . . . . . . . . 51

3.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4 Sequence Variables 57
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.1.1 Limitations of Existing CP Approaches . . . . . . . . . 61

4.2 Sequence Domain . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.2.1 Encoding Forbidden Subsequences in a Graph . . . . . 66

4.2.1.1 Forbidden Subsequences Restriction . . . . . 67

4.2.1.2 Insert Consistency . . . . . . . . . . . . . . . 68

4.2.1.3 Insertion . . . . . . . . . . . . . . . . . . . . 69

4.2.1.4 NotBetween . . . . . . . . . . . . . . . . . . 71

4.2.1.5 Domain Mapping . . . . . . . . . . . . . . . 72

4.2.1.6 Domain Wipe-Out . . . . . . . . . . . . . . . 73

4.2.2 Excluded Nodes . . . . . . . . . . . . . . . . . . . . . . 73

4.2.3 Mandatory Nodes . . . . . . . . . . . . . . . . . . . . . 74

4.2.4 Compact Domain Implementation . . . . . . . . . . . 75

4.2.4.1 Initialization . . . . . . . . . . . . . . . . . . 76

4.2.4.2 Invariants . . . . . . . . . . . . . . . . . . . 76

4.2.4.3 API and Time Complexity . . . . . . . . . . 79

4.2.4.4 Domain Updates . . . . . . . . . . . . . . . . 79

4.2.4.5 Visit of Nodes as Boolean Variables . . . . . 83

4.2.4.6 Space Complexity . . . . . . . . . . . . . . . 84

4.3 Constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

4.3.1 Distance . . . . . . . . . . . . . . . . . . . . . . . . . . 85

4.3.2 TransitionTimes . . . . . . . . . . . . . . . . . . . . . 86

4.3.3 Precedence . . . . . . . . . . . . . . . . . . . . . . . . 87

4.3.4 Cumulative . . . . . . . . . . . . . . . . . . . . . . . . 90

4.3.5 SubSequence . . . . . . . . . . . . . . . . . . . . . . . 92

4.4 Search . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

4.4.1 Branching . . . . . . . . . . . . . . . . . . . . . . . . . 95

4.4.2 Large Neighborhood Search . . . . . . . . . . . . . . . 96

4.5 Related work: Previous Insertion Sequence Variables . . . . . 96



Contents ix

4.5.1 First Iteration: The Basis . . . . . . . . . . . . . . . . . 97

4.5.2 Second Iteration: Lighter Implementation . . . . . . . 99

4.5.3 Summary of the Differences . . . . . . . . . . . . . . . 100

4.6 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

4.6.1 Dial-A-Ride Problem . . . . . . . . . . . . . . . . . . . 103

4.6.1.1 LNS . . . . . . . . . . . . . . . . . . . . . . . 103

4.6.1.2 Exact Search . . . . . . . . . . . . . . . . . . 104

4.6.2 Patient Transportation Problem . . . . . . . . . . . . . 107

4.6.2.1 Model and Search . . . . . . . . . . . . . . . 108

4.6.2.2 Computational Results . . . . . . . . . . . . 110

4.6.3 Traveling Salesman Problem With Time Windows . . 111

4.6.3.1 Feasibility . . . . . . . . . . . . . . . . . . . 113

4.6.3.2 Optimization . . . . . . . . . . . . . . . . . . 115

4.6.4 Prize-Collecting Sequencing Problem . . . . . . . . . . 119

4.6.4.1 Computational Results . . . . . . . . . . . . 121

4.7 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

4.7.1 Limitations . . . . . . . . . . . . . . . . . . . . . . . . 121

4.7.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . 122

4.7.2.1 Stronger Filtering . . . . . . . . . . . . . . . 122

4.7.2.2 Reducing Memory Consumption . . . . . . . 123

4.7.2.3 Domain Delta . . . . . . . . . . . . . . . . . 124

4.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

5 Conclusion 127
5.1 Perspectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127





Introduction 1
The Vehicle Routing Problem (VRP) is a class of optimization problems with

many variants, where the goal consists in finding optimal paths for a fleet

of vehicles under various constraints [BRV16]. Finding the best solutions to

those problems is a difficult task, and many different approaches exist that

try to balance speed and solution quality. Given the large number of problem

variants, finding approaches that can be easily adapted to a new variation,

while remaining efficient, is challenging.

Constraint Programming (CP) is a strong candidate to deal with VRPs

[KS06], as its declarative paradigm allows to easily add new variations to a

problem formulation. However, despite CP’s simplemodeling, it is not always

the best approach when tackling VRPs. Part of the inefficiencies lies in the

way CP attempts to create a solution on VRPs, as the exploration of solution

candidates does not always exploit information in the problem, and may take

a large amount of time to discover good solutions. Furthermore, the modeling

of optional visits present in some VRP variants is not always straightforward,

and may hinder the performance of CP solvers.

Recently, work conducted by Thomas, Kameugne, and Schaus introduced

a new way to tackle VRPs in CP, through the use of insertion sequence vari-

ables [TKS20]. This approach proved to be more effective than other CP al-

ternatives on several VRPs [Tho23]. Yet, their formal definition of sequence

variables was relatively complex, and we believed that an even better work

could be achieved.

1.1 Research Goals

This thesis attempts to keep the ease of modeling from CP, while enhancing

its performance when solving VRPs. In particular, it tries to get closer to

optimal solutions found on complex VRPs, where CP may be dominated by

other approaches. It also aims to deepen our knowledge about the newly

proposed insertion sequence variables, formalizing their definition, studying

possible extensions, and applying them on additional VRPs.

1



2 Chapter 1. Introduction

1.2 Contributions

The main contributions of this thesis are

■ Several black-box
1
value selection heuristics for CP, that try to bal-

ance speed and information. They aim to automate greedy decisions

on problems such as the Traveling Salesman Problem.

■ Further work on insertion sequence variables:

– A formal definition of the domain of insertion sequence variables.

– An implementation of an insertion sequence variable domain, pre-

senting data-structures, invariant and properties of the domain.

– A simplification of the API and algorithms defined over insertion

sequence variables compared to previous versions.

– An introduction of dedicated constraint algorithms and consis-

tency levels for insertion sequence variables.

– An application of insertion sequence variables on several opti-

mization problems, such as the Dial-A-Ride Problem and the Trav-

eling Salesman Problem with Time Windows.

1.3 Publications

A significant part of this work has been published in:

■ A. Delecluse and P. Schaus. “Black-Box Value Heuristics for Solving

Optimization Problems with Constraint Programming (Short Paper)”.

In: 30th International Conference on Principles and Practice of Constraint
Programming (CP 2024). Schloss Dagstuhl–Leibniz-Zentrum für Infor-

matik. 2024

This paper presents several value selection heuristics for CP, that can

be used in a black-box context. They automate greedy search strategies

when applied on the Traveling Salesman Problem.

■ A. Delecluse, P. Schaus, and P. Van Hentenryck. “Sequence Variables

for Routing Problems”. In: 28th International Conference on Principles
and Practice of Constraint Programming (CP 2022). Schloss Dagstuhl-

Leibniz-Zentrum für Informatik. 2022

1
A value-selection heuristic is black-box (domain-independent) if it can be plugged, un-

changed, into any CP model because it relies solely on generic information provided by the

solver at run time. White-box heuristics, by contrast, are tailored to a given problem or model

and encode explicit semantic knowledge, so they are not reusable across unrelated problems.
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This paper presents a first variation of the sequence variables intro-

duced previously [TKS20]. The previous implementation was simpli-

fied, and we obtained better performance on several VRPs, including

new best known solutions for the classical benchmark of the Traveling

Salesman Problem with Time Windows [Lóp20].

Another research paper is still in preparation at the time of writing this

thesis. It presents a second variation of sequence variables in A. Delecluse,

P. Schaus, and P. Van Hentenryck. “Sequence Variables: A Constraint Pro-

gramming Computational Domain for Routing and Sequencing”. Manuscript

in preparation. 2025.

Finally, another contribution of this thesis is the implementation of inser-

tion sequence variables in the CP solver MaxiCP [Sch+24].

1.4 Outline

The necessary background about CP and VRPs is first introduced in Chap-

ter 2. It finishes by identifying some of the challenges faced when solving

VRPs with CP. One of them is the derivation of efficient black-box search

strategies, which is directly addressed in Chapter 3. There, value heuristics

developed in the thesis are presented, which aim to automate greedy strate-

gies for VRPs. Chapter 4 presents the core content of the thesis: insertion

sequence variables. It gives a formal definition of sequence variables, pro-

poses an implementation, and presents related constraints and search algo-

rithms. The chapter ends with their application on various VRP variants and

a discussion regarding limitations and future work. Finally, the last chap-

ter summarizes the work developed in this thesis and highlights some future

research directions.





Background 2
This chapter provides the necessary background to fully grasp the content

of the thesis. Vehicle Routing Problems (VRPs), which is the main class of

problems targeted by this work, are first presented in section 2.1. Section 2.2

then presents Constraint Programming (CP), the paradigm explored in this

thesis for tackling the VRP. Section 2.3 presents Large Neighborhood Search,

a meta heuristic commonly used in VRPs and compatible with CP. Finally,

section 2.4 presents some challenges when attempting to solve VRPs with

CP, possibly with LNS, and ends with the research questions studied in this

thesis.

2.1 Vehicle Routing Problems

Vehicle Routing Problem (VRP) is a class of problems dealing with transporta-

tion. In many cases, such problems involve finding itineraries for a fleet of

vehicles that must visit a set of locations, possibly by minimizing a given ob-

jective, such as the travel length. A VRP instance and a feasible solution are

shown in Figure 2.1.

Depot Depot

Figure 2.1: Example of a VRP with 3 vehicles that must visit a set of loca-
tions, each starting from and returning to a common depot (left). A possible
solution is shown on the right.

We will first present the simplest (and most well known) VRP: the Trav-

eling Salesman Problem.

5



6 Chapter 2. Background

2.1.1 Traveling Salesman Problem - TSP

The Traveling Salesman Problem (TSP) is an optimization problem defined

over 𝑛 cities. A matrix R𝑛×𝑛 defines the distance between cities, and the goal

of the problem consists in finding a tour for a salesman that minimizes the

traveled distance, while visiting each city exactly once and returning to the

starting city. A TSP instance and its optimal solution are shown in Figure 2.2.

Figure 2.2: A TSP instance (left) and its corresponding optimal solution
(right). The distances between cities are Euclidean.

This problem is NP-hard, so no exact polynomial-time algorithm for solv-

ing the TSP is known, and such an algorithm is considered unlikely to exist

[Kar09]. There are two main lines of research devoted to solving the TSP,

which can also be used to describe the works on VRPs:

1. Exact methods, which aim at finding the best solution and proving its

optimality.

2. Heuristic methods, which target rapidly finding a good quality solu-

tion, with no guarantee on its optimality.

For instance, one exact approach for solving the TSP is the Concorde

solver, which managed to solve to optimality an instance of 85,900 cities

[App+09]. Regarding heuristics approaches, the Lin-Kernighan heuristic (LKH)

initially proposed by Lin and Kernighan in [LK73] and later refined by Hels-

gaun in [Hel00], provides within a few seconds optimal or near-optimal so-

lutions to instances with thousands of cities.

This thesis does not aim to fully cover the literature or approaches on

the TSP, but rather to use the TSP in some examples, as a TSP instance and

candidate solution can be easily visualized. The reader is referred to [Coo+11]

for a more complete overview of the techniques used in the Concorde solver,

and to [GP06; Law85] for a broader cover of existing techniques on the TSP.

Although the TSP already has direct applications in real-life (for instance,

finding the best path of a postal truck could be defined as a TSP in some cases),

this problem can be extended by adding several constraints in order to cover

more complex situations.
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2.1.2 Extending the TSP

One big difference between the TSP and many other VRP variants is the pres-

ence of several vehicles that may be used. A VRP variant might also involve

additional constraints further restricting the types of tours that are valid in

a solution. Some of the most commonly encountered constraints and aspects

are

Depots that define the starting and ending location of each vehicle. Two

main situations exist: homogeneous depots, where all vehicles use the
same depot locations, and heterogeneous depots, where the depots are
different between vehicles.

Optional visits are encountered when the visits of some location may be

omitted. In some of those problems, a penalty cost might occur when

not visiting a location by any vehicle.

Time windows are used to define valid times for the visit of nodes. When

working with such constraints, in many cases, a time matrix is also

employed. Compared to a distance matrix, that defines transition cost

between nodes, this matrix defines the transition time between loca-

tions. Moreover, visiting a node may induce a given processing time,

and waiting at a node (i.e. arriving too early at a location and waiting

until the beginning of its time windows to perform the task related to

the visit) may be allowed.

Time dependent travel times where the travel time between nodes changes

over time, which is often the case in real-life problems due to traffic

congestion.

Capacity allow representing the transport of goods in a vehicle. Visiting a

node in the problem leads to a load change in a vehicle, whose available

capacity is limited.

Precedences enforce an ordering between visits that must be respected in a

vehicle path.

Pickup and deliveries define pairs of nodes (a pickup and its correspond-

ing delivery) that are linked together. The nodes within a pair must

be visited by the same vehicle, and the visit of the pickup must occur

before the visit of its corresponding delivery. Between the visit of the

pickup and the delivery, a load change occurs in the vehicle.

Given the wide variety of vehicle routing problems that may be defined

by this simple non-exhaustive list of constraints, an extensive cartography of
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all existing VRPs falls outside the scope of this work. The reader is referred

to [BRV16] for a wider overview of the problem variants.

The majority of VRP problem classes are NP-hard. Consequently, signifi-

cant effort and time have been dedicated to finding effective approaches for a

given VRP variant. Compared to other works that attempt at finding the best

approach for a single class of VRP, this thesis aims at developing techniques

that may be simply adapted between different classes of VRP, while still be-

ing reasonably efficient. The next section presents Constraint Programming,

a paradigm that can be used to swiftly adapt between VRP variants.

2.2 Constraint Programming

Constraint Programming (CP) is a declarative paradigm used to solve combi-

natorial problems, and is a widely used approach for solving them [KS06]. As

expressed by Freuder in [Fre96], CP "represents one of the closest approaches
computer science has yet made to the Holy Grail of programming: the user states
the problem, the computer solves it."

CP is sometimes described as "Model + Search" as it solves combinatorial

problems by combining a declarative model with a backtracking search, that

attempt to find solutions encoded in the model. Those two components are

described next. The notations from this section are largely borrowed from

[MSV21].

2.2.1 Model

A CP model is used to define the combinatorial problem being tackled. It is

used to solve constraint satisfaction problems (CSPs), which are commonly

described by a triplet ⟨X,D, C⟩, where X = {𝑥0, . . . , 𝑥𝑛−1} is the finite set of
variables composing the problem,D = {D0, . . . ,D𝑛−1} are the domains used

by those variables, and C is the finite set of constraints restricting the values

present in the domains of the variables. The next sections will present each

of those concepts.

2.2.1.1 Variable

A variable in constraint programming is a decision entity that must be as-

signed a value from a domain; these assignments are governed by constraints

defining the problem. Various types of variables exist, the most common one

being integer variables. In the context of the TSP, such a variable can be used

to represent (the index of) which city is visited after another one, or the (in-

teger) distance between a location and the next one in a TSP tour.
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A non-exhaustive list of other types of variables encountered in CP is pre-

sented next. They all share the same fundamental concept: they are decision

entities whose values must satisfy the problem’s constraints.

Boolean Variables that represent an unknown boolean value. Many CP

solvers consider boolean variables as integer variables that only rep-

resent values 0 and 1, corresponding to false and true, respectively.

Set Variables representing a set of elements, such as integers. The size of

the set and the elements composing it are to be decided. They were

introduced in [Pug93; Ger93; Ger95; Ger06].

Graph Variables representing unknown graphs, where the nodes and edges

composing the graphs are to be decided. They were first introduced in

[DDD05].

Optional Task Interval Variables are mainly used in scheduling problems

for representing when a task begins and ends, and if it must be executed

or not. They were introduced in CP Optimizer and the following work

[LR08; Lab+09b; Lab+18b], and are also present in the Or-Tools solver

[PFa].

Interval Sequence Variables represent an ordering over a (sub)set of op-

tional task interval variables. The order of appearance of the optional

tasks, and which ones belong to the sequence, is to be decided. Such

variables were introduced in [Lab+18b; Lab+18a]. They are also present

in the OrTools solver. [PFa; PFb] These can be used to model VRPs,

where tasks are related to the visits of nodes, and the ordering repre-

sents the visits performed by a vehicle.

Insertion Sequence Variables are similar to interval sequence variables,

but represent an ordering over a (sub)set of integers instead of interval

variables. Compared to interval sequence variables, which are mainly

targeted for scheduling applications, those variables are mainly tar-

geted for routing, for reasons highlighted in section 4. They were first

introduced by Thomas, Kameugne, and Schaus in [TKS20], and more

detailed in the thesis of Thomas [Tho23].

String Variables represent a string, whose length and characters composing

it are to be decided. They were developed in [SFP15; Sco+17].

BitVector variables were introduced in [MV12b], in order to represent prob-

lems in verification and cryptography. They represent a vector of bits,

where the activated bits are to be decided.
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2.2.1.2 Domain

A domainD is used to represent a set of values. A variable 𝑥 ∈ X is associated

with one domain D, that represents the set of values the variable can take.

The operation D(𝑥) over a variable 𝑥 allows retrieving its domain. In the

context of a TSPwith𝑛 cities, the domainD of an integer variable 𝑥0, defining

the city visited after location 0 in a TSP tour, may correspond to {1, 2, . . . , 𝑛 −
1}. Whenever the domain of a variable is a singleton (i.e. it contains only one
value), the variable is said to be fixed, and unfixed otherwise.

Each domain type is specific to the variable it is associated with (e.g. inte-
ger domains are specific for integer variables). Different data structures may

be used to represent a given domain, with different trade-offs in both compu-

tational time and memory.

Integer domains are ordered and inherit their order from the integers. The

lower bound ⌊D⌋ of an integer domain D describes the smallest value con-

tained within it. Similarly, the upper bound ⌈D⌉ relates to its largest value.

An integer domain is said to be dense if all integers between the lower and

upper bound belong to its domain, and sparse otherwise.

Example 2.2.1. Assuming a domain D = {0, 1, 3, 4}, its lower bound is

⌊D⌋ = 0, its upper bound is ⌈D⌉ = 4 and the domain is sparse, as 2 ∉

{⌊D⌋, . . . , ⌈D⌉}. Given that the domain is not a singleton (|D| > 1), a vari-

able 𝑥𝑖 with domain D is unfixed.

A candidate solution 𝜎 assigns to each decision variable 𝑥 a value in its

domain: 𝜎 (𝑥) ∈ D(𝑥)∀𝑥 ∈ X.

Handling backtracks A CP model is often combined with a backtrack-

ing depth-first search. The domains encoded within a model need thus to be

saved and restored on backtrack. There are two main mechanisms for sav-

ing and restoring a state: copying and trailing. The first method, copying,

creates a new fresh copy of all values in the state for each node considered

during the search tree exploration. On backtrack, the state corresponding to

a given node in the search tree is retrieved. The second method, trailing, can

be seen as an optimized lazy version of copying. It stores undo operations,

by encoding information on how to reconstruct the state after a change has

been performed. Those undo operations are only stored for values in the state

that have been changed since the last save, compared to copying which must

fully retain the full state. Trailing is therefore well suited when only a small

portion of the state is changed.

A popular and efficient CP solver relying on copy is Gecode [STL10],

while trailing is found in modern CP solvers such as MiniCP [MSV21], Ace

[Lec23], Choco-Solver [PF22] but also in older solvers such as CHIP [Meh+88]
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and ILOG Solver [Sol95]. The reader is referred to [MSV21] for a more de-

tailed description of state management, as well as copy and trailing mecha-

nisms. Trade-offs between those two methods are also discussed in [Sch99].

The methods developed in this thesis have been implemented in trail-

based solvers (MiniCP [MSV21], MaxiCP [Sch+24] and Choco-Solver [PF22]).

Example 2.2.2. This example is borrowed from [MSV21; SMV25]. Listing 1

presents the usage of reversible integers (StateInt) in the MiniCP solver.

Saving and restoring the state is done by a StateManager, which is either a

Copier or a Trailer (working by copying or trailing, respectively). The entries

stored in memory are illustrated in Figure 2.3. The Copier stores the values

of all reversible integers at each saveState call, creating a fresh copy of

the full state ready to be used. In contrast, the Trailer stores in a current

backup the undo operations: the assignment to perform after executing a

restoreState operation. In either case, each saveState call adds entries

in a stack of backup, which consumes memory.

1 StateManager sm = makeStateManager();
2 // sm is either a Trailer or Copier
3 StateInt a = sm.makeStateInt(7);
4 StateInt b = sm.makeStateInt(13);
5

6 sm.saveState(); // record current state a=7, b=13
7 a.setValue(6);
8 a.setValue(11);
9 sm.saveState(); // record current state a=11, b=13
10 a.setValue(4);
11 b.setValue(9);
12 sm.restoreState(); // now a=11, b=13
13 sm.restoreState(); // now a=7, b=13

Listing 1: Usage of reversible integers (StateInt) in MiniCP.

Sparse Sets Several data structures can be used to represent an integer do-

main in a reversible way. One of them is the reversible sparse set from [BT93;

Sai+13]. It relies on two integers arrays and only one reversible integer. It

allows querying in constant time if a value is contained in a domain D, and

iterate in 𝑂 ( |D|) over the domain. Removing a single value and fixing the

domain to a singleton are constant time operations.

In a reversible sparse set, one array values encodes the current values in
the domain D. A second array indices tells the index of each domain value
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a=7 b=13

Backup

a=11 b=13

Backup

Stack<Backup>
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Backup
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Backup
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Stack<Backup>
Trailer

a=7 b=13

Backup

a=11 b=13

Backup

Stack<Backup>
Copier

Backup

a=7

Backup

Backup: current

Stack<Backup>
Trailer

a=7 b=13

Backup

Stack<Backup>
Copier

Backup

a = 7

Backup: current

Stack<Backup>
Trailer

a=7 b=13

Backup

Stack<Backup>
Copier

Backup Backup: current

Stack<Backup>
Trailer

a=7 b=13

Backup

Stack<Backup>
Copier

Backup

a = 7

Backup: current

Stack<Backup>
Trailer

a = sm.makeStateInt(7);
b = sm.makeStateInt(13);
sm.saveState();
// a = 7, b = 13

a.setValue(6); a.setValue(11)
// a = 11, b = 13

sm.saveState()
// a = 11, b = 13

a.setValue(4); b.setValue(9)
// a = 4, b = 9

sm.restoreState()
// a = 11, b = 13

Figure 2.3: Entries stored between a Copier and a Trailer for listing 1.
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within the values array. Finally, a reversible integer 𝑛 tells the size of the

current domain. For a domain D, the following invariants are maintained:

values[indices[𝑣]] = 𝑣 (2.1)

D = {values[𝑖] | 0 ≤ 𝑖 < 𝑛} (2.2)

One main advantage of this data structure is that only one reversible in-

teger (𝑛) must be tracked, no matter the domain size. Domain changes may

only occur through value removals: either by removing a single value from

the domain or by fixingD to a singleton. The previous state of a domain is re-

trieved by restoring the value of the reversible integer 𝑛. It is worth pointing

out that this data structure does not maintain the order of values, which may

impact the interactions with algorithms iterating over the remaining values

in the domain.

Example 2.2.3. A reversible sparse set and operations on it are represented

in Figure 2.4.

4 5 0 2 3 1values

2 5 3 4 0 1indices
0 1 2 3 4 5

𝑛
D

4 2 0 5 3 1values

2 5 1 4 0 3indices
0 1 2 3 4 5

𝑛
D

2 4 0 5 3 1values

2 5 0 4 1 3indices
0 1 2 3 4 5

𝑛
D

2 4 0 5 3 1values

2 5 0 4 1 3indices
0 1 2 3 4 5

𝑛
D

D ← D \ {5}

D ← {2}

restoreState() (backtrack)

Figure 2.4: A domain D encoded in a reversible sparse set. From an initial
domain (top left), value 5 is removed (top right). The domain is then fixed to
value 2 (bottom left). It is then restored to its initial state (bottom right).
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A sparse set actually encodes a bipartition, separating by the 𝑛 marker

(i.e. a reversible integer) the values currently in the domainD and the values

that were previously in the domain. This data structure can also encode a

tripartition over a set of values 𝑉 , by using two markers 𝑟, 𝑝 instead of a

single one, as shown in [Sai+13]. The invariants maintained in this case are

(𝑅 ∪ 𝑃 ∪ 𝑋 = 𝑉 ) ∧ (𝑅 ∩ 𝑃 = 𝑅 ∩ 𝑋 = 𝑃 ∩ 𝑋 = ∅) (2.3)

𝑅 = {values[𝑖] | 0 ≤ 𝑖 < 𝑟 } (2.4)

𝑃 = {values[𝑖] | 𝑟 ≤ 𝑖 < 𝑝} (2.5)

𝑋 = {values[𝑖] | 𝑝 ≤ 𝑖 < |𝑉 |} (2.6)

And invariant (2.1) is kept. The set 𝑉 is split into three disjoint subsets,

𝑅, 𝑃 and 𝑋 (2.3). The split between the set is encoded with the markers 𝑟 and

𝑝 (2.4), (2.5), (2.6). Initially, the sets 𝑅 and𝑋 are empty, and 𝑃 = 𝑉 . The set 𝑃 is

shrunk over time, by moving values from 𝑃 into either 𝑅 or 𝑋 . The set 𝑃 can

only decrease in size, while both 𝑅 and 𝑋 can only increase in size through

the data structure updates. A previous state is retrieved by restoring the value

of the two reversible integers 𝑟, 𝑝 .

Example 2.2.4. Figure 2.5 shows a tripartition implemented with a sparse

set.

Optional Task Interval Domain The domain D of an optional task in-

terval variable represents when a task begins, its duration, and when it ends

[LR08; Lab+09b]. Additionally, such a domain can take a special "absent"

value if the task is not executed. Queries on the domain allow retrieving

■ A Start, that indicates when the task begins.

■ An End, indicating when the task finishes.

■ A Duration representing the duration of the task.

■ A Presence status, telling if the task is executed or not.

The start, end and duration can be represented by integer domains. In CP Op-

timizer [Lab+18b], a commercial scheduling solver, those 3 integer domains

only support update of their lower and upper bound, meaning that they do

not require data structures such as sparse sets for their implementation. The

presence status can be represented by a boolean domain.

Example 2.2.5. Figure 2.6 shows an optional task interval domain where

the presence is set to true, Start ∈ {0, 1, 2, 3}, End ∈ {4, 5, 6, 7, 8}, Duration ∈
{3, 4, 5}. One instantiation of the domain is shown below, where the start, end

and duration are fixed.
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4 5 0 2 3 1values

2 5 3 4 0 1indices
0 1 2 3 4 5

𝑟 𝑝
𝑅 𝑃 𝑋

4 5 2 0 3 1values

3 5 2 4 0 1indices
0 1 2 3 4 5

𝑟 𝑝
𝑅 𝑃 𝑋

4 5 2 3 0 1values

4 5 2 3 0 1indices
0 1 2 3 4 5

𝑟 𝑝
𝑅 𝑃 𝑋

4 5 2 3 0 1values

4 5 2 3 0 1indices
0 1 2 3 4 5

𝑟 𝑝
𝑅 𝑃 𝑋

𝑅 ← 𝑅 ∪ {2}

𝑋 ← 𝑋 ∪ {0}

restoreState() (backtrack)

Figure 2.5: A reversible sparse set partitioning a set of values 𝑉 into three
disjoint sets 𝑅, 𝑃, 𝑋 . From an initial partitioning (top left), value 2 is added
into 𝑅 (top right). Value 0 is then added into 𝑋 (bottom left). The partition is
afterward restored to its initial state (bottom right).

Interval Sequence Variable Domain An interval sequence variable do-

main represents all orderings over the optional task intervals related to it.

Some or all optional tasks may be absent.

In terms of implementation, CP Optimizer represents such a domain with

a head-tail structure [Lab+18b; Lab+18a], which is also the case in the OrTools
solver according to their manual [PFa; PFb; 21]. The head (resp. tail) repre-

sents the beginning (resp. ending) of the sequence. Both the head and the tail

can grow, by adding one optional task interval to it. A domain becomes fixed

whenever the head and the tail merge together, therefore representing only

one ordering. At the beginning, when no task is included, the head and the

tail are represented by sinks, special values indicating that no task is currently
the first or the last one in the sequence.

Example 2.2.6. Figure 2.7 shows the domain of an interval sequence variable

over a set of optional task intervals {𝑡1, . . . , 𝑡18}. The sinks are represented by
𝛼 and 𝜔 for the head and the tail, respectively.
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Task

Duration

Start End

Task

Duration

Start End

0 1 2 3 4 5 6 7 8
Time

One

instantiation

Figure 2.6: Domain of an optional task interval (top) and a possible instan-
tiation for it (bottom). The rectangle represents the processing time of the
optional task interval.
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Latest in
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Earliest in
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Latest Present
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Candidates

head

Candidates
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Absent

Head Not sequenced Tail

OptionalPresentAbsent

Figure 2.7: Domain of an interval sequence variable.

2.2.1.3 Constraint

A constraint 𝑐 ∈ C is used to restrict the domain(s) of one or several variables

through a relation. The variables affected by a constraint 𝑐 are said to be in

the scope of 𝑐 . In the context of a TSP, given that each city must be visited

exactly once, one constraint may restrict the domain of the successor variable
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𝑥𝑖 of a city 𝑖 to be different from 𝑖: no self-loops are allowed.

The valuation function 𝑐 (𝜎) of a constraint 𝑐 with respect to a candidate

solution 𝜎 is the 0-1 value evaluating to 1 if and only if the constraint holds.

For instance, assuming a constraint 𝑐 (𝑥,𝑦) ↔ 𝑥 = 𝑦 + 1, with D(𝑥) = {0, 1}
andD(𝑦) = {1, 2}, 𝑐 (0, 1) = 1 and 𝑐 (0, 2) = 0. A solution to a CSP ⟨X,D, C⟩ is
an assignment satisfying all constraints in C. The set of all solutions is writ-
ten by S(⟨X,D, C⟩). A CSP without any solution is said to be unsatisfiable

(UNSAT) and satisfiable (SAT) otherwise.

Given a constraint 𝑐 , we can introduce a boolean variable 𝑏 indicating

whether 𝑐 is satisfied. Reification is then defined by the equivalence

reify(𝑐, 𝑏) ⇐⇒
(
𝑐 ↔ 𝑏 = 1

)
.

That is, 𝑏 = 1 if and only if 𝑐 holds.

A filtering algorithm F𝑐 , also called propagator, is a function associated

with a constraint 𝑐 ∈ C, which takes as input the domains of the variables,

and outputs shrunk domains, without the removal of any solution to the con-

straint 𝑐 . Different filtering algorithm may exist for the same constraint.

A constraint enforces a given consistency level, which describes the strength
of its filtering. Two of the most commonly encountered consistency levels are

Bound consistency that assumes that all domains of variables in the scope

of the constraint 𝑐 are dense, and enforces that the bounds of each do-

main of every variable participate in a solution. Assume that scope(𝑐) =
{𝑥0, . . . 𝑥𝑛−1} is a function retrieving the 𝑛 variables in the scope of 𝑐 .

Let us define N = {0, . . . , 𝑛 − 1}, the set of indices of the 𝑛 variables in

the scope of 𝑐 . We can define by the predicate

𝑔(𝑖, 𝑣) = ∀𝑗 ∈ (N \ {𝑖}) : ∃𝑤 𝑗 ∈ D(𝑥 𝑗 )
s.t. 𝑐 (𝑤0 . . .𝑤𝑖−1, 𝑣,𝑤𝑖+1 . . .𝑤𝑛−1) = 1 (2.7)

that there exists a solution to the constraint such that 𝑥𝑖 = 𝑣 . Bound

consistency is defined as:

∀𝑖 ∈ N : (𝑔(𝑖, ⌊D(𝑥𝑖)⌋) ∧ 𝑔(𝑖, ⌈D(𝑥𝑖)⌉)) (2.8)

Domain consistency that enforces that each value in each domain of the

variables in the scope of 𝑐 participates in a solution.

∀𝑖 ∈ N ∀𝑣 ∈ D(𝑥𝑖) 𝑔(𝑖, 𝑣) (2.9)
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Although domain consistency filtersmore inconsistent values than bound-

consistency, enforcing it might be more time-consuming and complex than

enforcing bound consistency.

The fixpoint of a CSP is obtained after executing the filtering of all con-

straints included in the CSP, so that no further filtering of any domain occurs.

Even when all constraints composing the CSP enforce domain consis-

tency and a fixpoint has been reached, some values within the domain of

variables may not belong to any solution. A value that belongs to a solution

of a CSP is said to be globally consistent, while a value belonging to a domain

after the fixpoint has been reached are said to be locally consistent.

Example 2.2.7. Let us consider a CSP with X = {𝑥0, 𝑥1, 𝑥2}, D = {{0, 1, 2},
{0, 1}, {0, 1}} and C = {𝑐0, 𝑐1, 𝑐2}, with 𝑐0 ↔ 𝑥0 ≠ 𝑥1, 𝑐1 ↔ 𝑥1 ≠ 𝑥2, 𝑐2 ↔ 𝑥2 ≠

𝑥0. The values within all domains are locally consistent: the fixpoint has been

reached and any filtering from 𝑐0, 𝑐1 and 𝑐2 may not provoke further changes.

However, in D(𝑥0) = {0, 1, 2}, only value 2 is globally consistent: there does

not exist any solution to this CSP where D(𝑥0) = {0} ∨ D(𝑥0) = {1}.
It is worth noting that 𝑐0, 𝑐1, 𝑐2 actually imply that all variables in X must

be different. If those constraints were instead replaced by such anAllDifferent

constraint, with a domain consistent propagator such as [Rég94], the domain

of 𝑥0 would have been directly reduced to D(𝑥0) = {2}.

Works such as [BV03b] describe more properties associated with con-

straints. Hundreds of constraints exist (the Global Constraint Catalog website

contains a list of 423 constraints at the time of writing this thesis [Dem14]).

Some of the constraints encountered in this thesis are

■ Sum which enforces that the sum of integer variables matches a given

variable:

Sum(𝒙, 𝑦) ↔
∑︁
𝑥𝑖 ∈𝒙

𝑥𝑖 = 𝑦 (2.10)

■ AllDifferent [Rég94; Van01; ZLZ18] which enforces that 𝑛 integer

variables take different values:

AllDifferent(𝒙) ↔ ∀𝑖∈N,∀ 𝑗∈N\{𝑖 }𝑥𝑖 ≠ 𝑥 𝑗 (2.11)

Where N = {0, . . . , 𝑛 − 1}.

■ Circuit is applied on an array of integer variables succ, and enforce

that they represent a Hamiltonian circuit [Pes+98]. More specifically,

each variable succ𝑖 must be instantiated to a value corresponding to
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an index in the succ array. By following the links represented by the

variables, all variables are traversed in a circuit. A CP model using

such circuit constraint to model a VRP, for instance a TSP, is referred

to as a successor model.

A variant is the subcircuit constraint available in some solvers [Net+07;

Bou+16a; Van02; Lab+18b], that allows self-loops to be encoded. In this

case, a variable succ𝑖 can be instantiated to value 𝑖 , which represents a

self-loop for this variable.

Example 2.2.8. One example of the circuit and the subcircuit con-

straint is shown on Figure 2.8.

2 3 1 5 0 4succ 2 4 1 3 0 5succ

Figure 2.8: Circuit constraint (left) and subcircuit (right). On the right, vari-
ables succ3 and succ5 do not belong to the circuit.

Some variants also include a weighted version of this constraint. In

addition to the succ array, the length of the circuit is captured in an in-

teger variable. Transitions between variables can be weighted, which

impacts the computed length. Given that this constraint enforces a

Hamiltonian circuit, it is often used to model TSP and VRPs.

Note that this constraint implies anAllDifferent constraint over the succ
variables.

■ Elementmodels array accesses [Van87; Van89; HC88]. It is defined by

Element(𝑇, 𝑥,𝑦) ↔ 𝑇 [𝑥] = 𝑦 (2.12)

The array 𝑇 may be an array of integers or an array of variables.

■ Cumulative is used with activities in scheduling contexts [GHS15;

BC02; AB93]. Each activity is associated to a resource consumption

amount. The cumulative constraint ensures that the cumulated load of

executed activities never exceeds a given capacity at any point in time.

More formally:

Cumulative(𝑠, 𝑒, 𝑙, 𝑐) ↔ ∀𝑡
∑︁

𝑖∈{0,..., |𝑠 |−1},𝑠𝑖≤𝑡<𝑒𝑖

𝑙𝑖 ≤ 𝑐 (2.13)
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Where 𝑠 is the start of the activities, 𝑒, 𝑙 their corresponding end and

load, and 𝑐 is the capacity. Solvers typically support this constraint

with integer or optional task interval variables for representing the ac-

tivities. In the latter case, more expressive variants of the constraint

allow defining functions related to the load of executed activities.

Example 2.2.9. Figure 2.9 shows one cumulative constraint with a ca-

pacity 𝑐 = 3 and 4 activities, with loads 1, 2, 3 and 2.

Activity 1

Activity 2

Activity 3

Activity 4

0 1 2 3 4 5 6 7 8
Time

0

1

2

3

Load

𝑐

Figure 2.9: Cumulative constraint

In CP Optimizer, algebra to define cumulative constraints is provided in

a richer API, allowing defining for instance aminimum load 𝑐 to respect

(∀𝑡 ∑𝑖∈0.. |𝑠 |,𝑠𝑖≤𝑡<𝑒𝑖 𝑙𝑖 ≥ 𝑐), and to define how the execution of an activity

impacts the resource consumption (i.e. the resource is consumed during

the full duration of the activity, is consumed from its start and stays

consumed forever, etc.) [Lab09].

An important aspect of the filtering algorithms used with this con-

straint consists in mandatory parts [Lah82]. The mandatory part of an

activity denotes a fragment of time when it will be executed, no matter

the remaining domain operation that may occur on the variable. This

information is then exploited by filtering algorithms such as [BC02;

LBC12; OQ13; GHS15] to detect infeasible starting and ending times,

and prune inconsistent values.

Example 2.2.10. Figure 2.10 shows the mandatory part of an optional

task interval variable with its presence set to true, Start ∈ {0, 1, 2},
End ∈ {5, 6, 7}, Duration ∈ {5}. Its mandatory part starts at 2 and

ends at 5.
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Task (at the earliest)

Start End

Task (at the latest)

Mandatory part

Duration

0 1 2 3 4 5 6 7
Time

Figure 2.10: Mandatory part of an activity

2.2.1.4 Optimization Problems

A CSP may also include an objective function 𝑓 (X𝑛), with X𝑛 ⊆ X, to be

optimized. In such cases, the CSP becomes a constraint optimization problem

(COP), described by the tuple ⟨X,D, C, 𝑓 ⟩. Without loss of generality and

unless explicitly stated, this thesis will assume that objectives are functions

to be minimized. In the context of CP, they take variables as input and output

an integer value.

A solution to a COP is a solution to the CSP it contains. The optimal

solution of a COP is the solutionwith the best cost. Multiple optimal solutions

may exist.

2.2.2 Search

In Example 2.2.7, we saw that even when enforcing domain consistency on

every constraint, we do not necessarily directly find a solution to a CSP. In

such cases, one needs to explore the search space defined by the CSP in order

to find a solution, or to prove that none exists.

2.2.2.1 Branching Scheme

The branching scheme defines the strategy used to explore the search space.

In CP, the search space is commonly explored, using a depth-first search

(DFS). More specifically, each node considered by the DFS represents a given

CSP. If the CSP contains variables that are unfixed, the corresponding node in

the search tree can be expanded, partitioning the problem into several CSPs

to consider. Each generated CSP adds a constraint further restricting the orig-

inal CSP. Whenever a node is explored, all filtering algorithms are triggered

until the fixpoint is reached. If all variables are fixed, it corresponds to a valid
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assignment to the original problem. Backtracks occur whenever a domain

becomes empty which corresponds to a failure: no solution exists to the con-

sidered CSP. Backtracks can also occur to jump back to a remaining CSP not

yet considered.

Example 2.2.11. Continuing example 2.2.7. A possible search tree for solv-

ing the CSP is shown in Figure 2.11. The original CSP at node 0 is split into two

CSPs: the first one considered (node 1) adds a constraint 𝑥0 = 0 to the prob-

lem, while the second one adds a constraint 𝑥0 ≠ 0. In both cases, the filtering

of the domains occurs until the fixpoint is reached, but this process creates an

inconsistency in the CSP containing the constraint 𝑥0 = 0. The search finds

the two solutions to the problem after 6 nodes have been explored.

65

43

21

0

𝑥0 = 0 𝑥0 ≠ 0

𝑥0 = 1 𝑥0 ≠ 1

𝑥1 = 0 𝑥1 ≠ 0

D(𝑥0) = {0, 1, 2}
D(𝑥1) = {0, 1}
D(𝑥2) = {0, 1}

D(𝑥0) = {0}
D(𝑥1) = {1}
D(𝑥2) = ∅

D(𝑥0) = {1, 2}
D(𝑥1) = {0, 1}
D(𝑥2) = {0, 1}

D(𝑥0) = {1}
D(𝑥1) = {0}
D(𝑥2) = ∅

D(𝑥0) = {2}
D(𝑥1) = {0, 1}
D(𝑥2) = {0, 1}

D(𝑥0) = {2}
D(𝑥1) = {0}
D(𝑥2) = {1}

D(𝑥0) = {2}
D(𝑥1) = {1}
D(𝑥2) = {0}

C = {{𝑥0 ≠ 𝑥1}, {𝑥1 ≠ 𝑥2}, {𝑥2 ≠ 𝑥0}}

Figure 2.11: Possible search space exploration for Example 2.2.7. Each node
corresponds to a CSP where the fixpoint has been reached. Numbers in the
nodes correspond to their order of visit by a DFS. Nodes in green correspond
to a solution, and nodes in purple to a failure (i.e. inconsistency in the rep-
resented CSP).

Perhaps themost common strategy used to partition the CSP, whenwork-

ing with integer variables, is to select an unfixed variable 𝑥 ∈ X s.t. |D(𝑥) | >
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1, select a value 𝑣 ∈ D(𝑥) within its domain, and generate two CSPs: the first

one adding a constraint 𝑐 ↔ 𝑥 = 𝑣 , and the second its negation 𝑐 ↔ 𝑥 ≠ 𝑣 .

In this setting, the strategy used to select an unfixed variable is referred to as

variable selection, while value selection describes how to pick a value in the

domain of the selected variable.

Not all variables need to be considered during the search to find a solution

where all constraints hold. The user may identify a subset of the variables as

decision variables, that are considered during the search procedure. Fixing

the decision variables should fix the remaining variables once the fixpoint

has been reached.

Solving a COP can be done by considering the CSP it contains. Assume

that the objective 𝑓 of a COP ⟨X,D, C, 𝑓 ⟩ is associated to a variable 𝑧 =

𝑓 (X𝑛), with X𝑛 ⊆ X. Each time a solution 𝜎 for a CSP is found, where all de-

cision variables are fixed, its cost 𝑓1 = 𝑓 (𝜎𝑛), 𝜎𝑛 = {𝜎𝑖 | ∀𝑖 ∈ X𝑛} is computed.

Afterward, each subsequent CSP ⟨X,D, C⟩ considered by the DFS will also

include a new constraint 𝑐 𝑓1 , enforcing that the cost of the solution to this CSP

must be better than the cost previously found: ⟨X,D, C ∪ (𝑐 𝑓1 ↔ 𝑧 < 𝑓1)⟩.
Once a solution with optimal cost 𝑓𝑛 is generated in this manner, the con-

straint 𝑧 < 𝑓𝑛 added on the remaining CSPs renders them infeasible. This

proves the optimality of the solution 𝑓𝑛 : no assignment can be produced with

better cost.

The type of branching scheme considered plays a huge role in practice.

Given a CSP to solve, the main goal consists in proving if it is satisfiable or

not. Depending on the branching scheme performed, for the same initial CSP,

the search tree might be composed of millions of nodes or a few hundreds,

which impacts the solving time. Therefore, one is interested in generating a

search tree which is as small as possible. In the same manner, when solving a

COP with objective function 𝑓 , finding a feasible solution having a low cost

𝑓1 early in the search tree is also important. This first solution will add a

constraint 𝑓 < 𝑓1 for all remaining CSP to consider, which may prune nodes

in the search tree, preventing consideration of suboptimal solutions.

Example 2.2.12. Continuing example 2.2.11. By branching first on 𝑥1 instead

of 𝑥0, a much smaller search tree is obtained, as shown in Figure 2.12. The

DFS considered only 3 nodes compared to 6.

2.2.2.2 Search Exploration Principles

Three main principles used to reduce the size of the search tree considered

are [Ref04]:

1. Given that all variables must be fixed, choosing the variable constrain-

ing the most the problem helps in generating small search space. This
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0

𝑥1 = 0 𝑥1 ≠ 0

D(𝑥0) = {0, 1, 2}
D(𝑥1) = {0, 1}
D(𝑥2) = {0, 1}

D(𝑥0) = {2}
D(𝑥1) = {0}
D(𝑥2) = {1}

D(𝑥0) = {2}
D(𝑥1) = {1}
D(𝑥2) = {0}

C =


{𝑥0 ≠ 𝑥1},
{𝑥1 ≠ 𝑥2},
{𝑥2 ≠ 𝑥0}



Figure 2.12: Possible search space exploration for Example 2.2.7. Numbers
in the nodes correspond to their order of visit by a DFS. Nodes in green cor-
responds to a solution.

is also phrased in the first-fail principle: "To succeed, try first where

you are most likely to fail" [HE80].

2. Regarding the choice of value, two situations may arise. If the problem

is UNSAT, the choice of value does not matter much: all possibilities

will eventually be considered. On the contrary, if the problem is SAT, a

solution will be obtained faster if the chosen value maximizes the num-

ber of valid assignments for the remaining variables (in other words, if

it constrains as least as possible the remaining search space to consider).

In the case of a feasible COP, the value chosen should be the one most

likely to appear in an optimal solution.

3. The first choices, performed near the root of the search tree, should be

carefully chosen, as they are the ones having the most impact on the

search tree size. Recall that the search tree is explored using DFS. If

the CSP to solve is SAT, that the first left branch applied a constraint

𝑐 leading to no solution without being detected, all subsequent (and

UNSAT) CSP expanded after this first decisionwill be considered before

coming back to the first decision.

The next sections present some existing variable and value selection heuris-

tics applying those principles.

2.2.2.3 Variable Selection

Many variable selection heuristics attempting to follow the first-fail principle

have been developed over the years. A complete overview of all variable se-

lection heuristics falls outside the scope of this thesis, and there’s a lack in the

literature of a complete survey categorizing their features and performance.

Some commonly encountered features of variable selections heuristics are
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■ Domain size, prioritizing variables with small domain size.

■ Number of failures, selecting variables that often lead to a failure (i.e.,
one domain became empty when reaching the fixpoint) when branch-

ing on them.

■ Impact on search space, selecting variables that have substantially

reduced the search space when branching on them, due to filtering.

A non-exhaustive list of some popular variable heuristics using those fea-

tures is presented next. The heuristics are described at a high-level; readers

are referred to the corresponding paper for more details on the implementa-

tion or computational considerations.

■ MinDom that selects the unfixed variable with the smallest domain

size

■ DomWDeg that selects the unfixed variable with the smallest ratio of

domain size over its weighted degree. For a variable 𝑥 , its weighted

degree is defined as the sum of weights on the constraints with arity >

1 in the neighborhood of 𝑥 . The weight of a constraint 𝑐 itself is one

plus the number of times it has emptied a domain when applying its

related filtering. This heuristic was proposed in [Bou+04].

■ PickOnDom, introduced in [ALP23] and relying on the same principle

as DomWDeg, but where the weight is instead adjusted by tracking the

filtering performed by the constraints.

More specifically, a candidate weight increase with respect to a variable

𝑥 is computed based on the number of values removed from its domain

during the fixpoint computation. Each time a failure is encountered

during the fixpoint computation, all candidate weight increases change

the weight of their corresponding variable. Different types of increases

are discussed in the paper, leading to different variations of this heuris-

tic.

■ Impact-Based Search that maintains a score for each variable, corre-

sponding to its impact [Ref04]. The impact is defined as the contraction

of the search space occurring when a variable is branched on, and is up-

dated as branching decisions occur.

More specifically, it relies on

∏
𝑥∈X |D(𝑥) |, the Cartesian product of the

domains, which is an estimation of the search space size. The difference

in estimated search space size before and after branching on a variable

𝑥 ∈ X is used to set the impact of 𝑥 . Variables having the largest impact

are expected to reduce greatly the search space, and are selected first.
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■ Activity-Based Search, selecting the variable with the largest activ-
ity [MV12a]. The activity of a variable 𝑥 corresponds to the number

of times its domain was reduced during the branching and the fixpoint

execution. A decay factor is also used, forgetting oldest statistics pro-

gressively.

■ Last Conflict, proposed in [Lec+09], selects first the variable involved

in the most recent failure. This heuristic is combined with a fallback
heuristic when no selection can be made: at the beginning of the search

when no failure has been encountered or when the variable in the most

recent failure is currently fixed. This fallback heuristic is responsible

for selecting a variable in such a case.

■ Conflict Ordering Search that generalizes last conflict by adding a

time stamp to every variable 𝑥 , representing the latest time at which

a failure was detected when branching on 𝑥 . Variables with the high-

est timestamp are branched over first. It also needs to use a fallback

heuristic and was proposed in [Gay+15].

Even though no survey covering those heuristics exists, [ALP23] provides

more explanation on the implementation and behavior of some of them. They

are also presented on a massive online open course [SMV25]. It’s worth not-

ing that no heuristic strictly dominates the other ones on all problems.

The list of variable selections heuristics listed here are dynamic heuris-
tics: their choice depends on the current state of the problem (i.e. the current
domains) and possible past information, such as the number of failures en-

countered. In contrast, static heuristics do not exploit such information. One

example of a static heuristic is for instance to always iterate in a deterministic

order over the variables X, and select the first one being unfixed. Dynamic

heuristics outperform static ones in the majority of cases.

2.2.2.4 Value Selection

Compared to variable selection, where many different heuristics have been

developed over the years, there are fewer options regarding black-box value

selection. Therefore, selecting the minimum value in the domain of a vari-

able is often the default choice in CP solvers. Nevertheless, some alternative

options are presented next.

Phase-Saving is a value heuristic that can be used for COP [DCS18]. It

requires a past solution to be provided. When selecting a value to assign to

a variable, it gives the one appearing in a previous solution. If no value can

be selected (either because no previous solution exist, or because the value to



2.2. Constraint Programming 27

return does not belong to the variable’s domain), a fallback heuristic is used

instead. This heuristic is fast and enhances the performance when solving

COP, but still requires a prior solution and a fallback heuristic.

Objective landscapes can also be used for COP [Lab18]. Assume that the

objective 𝑓 of a COP ⟨X,D, C, 𝑓 ⟩ is associated to a variable 𝑧 = 𝑓 (X𝑛),
with X𝑛 ⊆ X. The objective landscape of a variable 𝑥𝑖 ∈ X𝑛 is a function

𝐿𝑖 : D(𝑥𝑖) → [⌊D(𝑧)⌋, +∞) representing an optimistic estimation of the im-

pact of assignment on the value of the objective 𝑧. When selecting a 𝑣 value

for 𝑥𝑖 , the one associated with the smallest increase 𝐿𝑖 (𝑣) on the objective is

chosen first. An objective landscape is computed before the search begins,

by observing the reductions on the bounds of the variables 𝑥𝑖 ∈ X𝑛 when

shrinking the domain of the objective variable 𝑧. Such functions are mainly

used in scheduling scenarios and are one of the components present in CP

Optimizer [Lab+18b].

Example 2.2.13. Figure 2.13 shows the objective landscape of a variable 𝑥𝑖 .

D(𝑥𝑖)

Objective value

𝐿𝑖 (D(𝑥𝑖))

Figure 2.13: Objective landscape 𝐿𝑖 of a variable 𝑥𝑖 .

While effective in scheduling, three practical points limit the performance

of objective landscapes on other types of problems. Firstly, they are estimated

before the search begins, based on domain reductions of the objective. Do-

main reductions of other variables are not represented in those functions; in

other words, they do not encode how values should be selected based on the

remaining domain of other variables. Secondly, the related paper [LR08] only

presents how to compute them for variablesX𝑛 directly involved in the objec-
tive function. Some consideration regarding non-objective variables X \ X𝑛
are briefly presented, but without proposing a computation of their objec-

tive landscape. Thirdly, the construction process detailed in the paper implies
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that they are quasi-convex1. On a TSP, this means that they cannot accurately

represent the best values for a successor variable, as such functions are not

quasi-convex.

Activity-Based Search can also be used to act as a value heuristic [MV12a].

In this case, it computes an activity corresponding to an assignment 𝑥 = 𝑣 as

the number of variables whose domain has been reduced when applying it.

The value 𝑣 ∈ D(𝑥) with the smallest associated activity (i.e. the value ex-
pected to modify the fewest variables) is selected first. A similar process can

be used with Impact-Based Search [Ref04], selecting values associated with

the smallest impact. Two main drawbacks of this approach are the space re-

quirements, as activity related to past assignments must be stored, and the

absence of information at the root node of the search tree, when no activity

has been observed yet.

2.2.2.5 Miscellaneous

The heuristics presented thus far assumed that the branching scheme pro-

ceeds in two steps: first selecting an unfixed variable, then a value to assign

to it. Other strategies exist, sometimes specifically designed for particular

types of problems. Some of them are presented next.

Failure Directed Search : Failure Directed Search (FDS) is a search proce-

dure present in CP Optimizer [VLS15]. Instead of working with variable and

value selection, this search procedure works with a set of choices. A choice

can be seen as a constraint used for the search space exploration, and may

be negated. Given a variable 𝑥 in the problem and a value 𝑣 in its domain, a

choice could be 𝑥 ≤ 𝑣 and its negation 𝑥 > 𝑣 . At a high level, FDS maintains

a rating for each choice, increased based on the search space reduction and

on the failures provoked when applying the choice. Choices with the highest

rating are applied first during the branching, with the aim to close the search

space as soon as possible and prove that the problem is UNSAT.

Given that FDS is used in scheduling context, the set of choices is mainly

related to interval variables. In particular, the initial set of choices generated

ensure that, if all performed, each optional task interval variable present in

the problem is either absent or contains a mandatory part (see Figure 2.10).

Once no choice can be applied, either the variables are fixed and a solution has

been found, a DFS can be used over the remaining problem, or more choices

can be generated at that point.

1
A function 𝑓 : R → R is quasi-convex if for all 𝑥,𝑦 ∈ R and for all 𝜆 ∈ [0, 1], we have

𝑓 (𝜆𝑥 + (1 − 𝜆)𝑦) ≤ max (𝑓 (𝑥), 𝑓 (𝑦)).
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FDS is well suited for proving that the problem is infeasible, and therefore

plays a key role in proving optimality for COP. However, it is not designed to

find a solution of good quality. Therefore, CP Optimizer combines FDS with

another strategy suited for finding improving solutions, Large Neighborhood

Search (LNS), whose process is detailed in Section 2.3. The search procedure

alternates between LNS phases to find solutions, and FDS phases to prove

their optimality.

Limited Discrepancy Search : Limited Discrepancy Search [HG95] is a

search procedure well suited when an informed value heuristic is provided.

It assumes that the best decisions are taken on the left branches during the

search tree exploration, and therefore limits the number of right branches

considered. This search procedure takes as input a maximum discrepancy

(i.e. number of right decisions) to tolerate and explore the search space using

DFS, except that search nodes exceeding the provided discrepancy are not

explored. This process is highlighted in Figure 2.14.

0 1 1 2 1 2 2 3

0 1 1 2

0 1

0

0 1 1 2 1 2 2 3

0 1 1 2

0 1

0

Figure 2.14: LimitedDiscrepancy Search, with a limited discrepancy of 0 (left)
and 1 (right). The discrepancy is indicated at each node. Nodes in gray are
ignored by LDS as their discrepancy is too high.

2.3 Large Neighborhood Search

On large problems, exploring the whole search space is impractical as it takes

too much time. In such a situation, a compelling alternative to DFS consists

in exploring diversified regions of the search space, covering only a subset of

the whole search space. Large Neighborhood Search is a meta heuristic with

this behavior [Sha98]. At a high level, it behaves as follows. It takes as input

a feasible solution, and creates a relaxed solution from it. This relaxed solu-

tion is obtained by keeping a fragment of the assignments (or structure) from

the solution, and leaving the remaining variables unfixed. From this relaxed

solution, the remaining problem is then solved using a search strategy such
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as DFS to fix the remaining variables. The process thus alternates between

relaxation phases and optimization phases.

In the context of VRPs, the original paper [Sha98] relaxes a solution by

removing some nodes from the obtained paths. The removed nodes are then

reinserted into the vehicles paths in order to optimize the routing plan. This

process is illustrated in Figure 2.15. In terms of search space exploration, LNS

can be seen as "jumping" between different parts of the search space: the CSP

considered after relaxation is located in a different region of the search space.

This phenomenon is illustrated in Figure 2.16 (adapted from [SMV25]): on a

large problem and given a time limit, DFS may only explore a small portion

of the search space. In contrast, LNS allows covering more diversified regions

of the search space.

Relax Optimize

Vehicle 1 Vehicle 2 Vehicle 3

Not routed Depot

Figure 2.15: LNS behavior on VRPs. From an initial solution (left), a relaxed
solution is constructed by removing some visits (middle). This relaxed solu-
tion is then optimized by inserting the removed visits (right).

DFS LNS

Figure 2.16: DFS vs. LNS behavior in terms of search space explored (blue).

The two components of LNS, the relaxation and optimization, play a crit-

ical role in its performance. Different relaxations are possible: relaxed vari-
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ables may be chosen randomly, similarly [Sha98], by removing successive

visits in one or several paths [CV20], etc. Regarding node insertion, they can

be done using greedy decisions (inserting the nodes with the smallest detour

first), using regret heuristics, etc. After relaxation, the optimization can also

use LDS instead of DFS [HG95; Sha98].

An extension of LNS is the Adaptive Large Neighborhood Search (ALNS)

[TS18; RP06; TSH21], where different operators for relaxation and optimiza-

tion are provided. ALNS dynamically selects the relaxation and optimiza-

tion operator to use in one iteration based on the past performance observed.

ALNS was originally proposed in [RP06]. Additional extensions of LNS are

discussed in [PR18].

Another line of research on LNS studies how to automatically choose a

suitable set of variables to relax, attempting to exploit the structure of the

problem. The core idea is to relax variables that are identified as related.

Works such as [GLN05] identify related tasks to relax together based on their

ordering in scheduling contexts and relax successive tasks, [PSF04] chose

variables to relax based on domain reductions, identifying links between vari-

ables due to propagation, and works such as [LS14] relax variables that are

the most expected to have an impact on the objective value, also exploiting

reductions of domains.

LNS is particularlywell suited for complex and large VRPs, where a declar-

ative model can be written using CP, but where the performance of the CP

solver does not allow exploring the full search space.

2.4 Challenges

With the background now laid out, some challenges are worth highlighting

when attempting to solve VRPs using CP. They are briefly presented in this

section, and the corresponding research questions tackled by this thesis are

stated afterwards.

2.4.1 Black-Box Search Heuristics

When solving VRPs, the value selection heuristics contribute significantly to

the performance. Take for instance the solving of a TSP. Some simple heuris-

tics attempt to create a TSP tour using a nearest neighbor strategy, selecting

the closest city as the successor of a node within a TSP tour. However, this

simple value heuristic is not commonly found in a black-box fashion within

CP solvers
2
. Most solvers still rely on choosing the minimum value in the

domain of the variables, which has no regards for the impact on the distance,

and provides solutions of lower quality than nearest neighbor strategies.

2
Section 3.1 dives deeper into previous attempt to create such value selection.
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2.4.2 Insertions and Large Neighborhood Search

In the LNS introduced in section 2.3, the relaxation phase removes some nodes

from the routing plan, and the optimization attempts to reinsert them. This

behavior with node reinsertion is not so trivial to enforce within a CP solver,

as a successor model using a circuit constraint does not easily support inser-

tion heuristics.

LNS commonly used in CP solvers keeps some variable assignments from

a previous solution. In the context of VRPs, assuming successor variables

and (sub)circuit constraint, this is equivalent to keeping some successor as-

signment from a previous solution, and the optimization process fixes the re-

maining successors in the problem. With this behavior, insertions such as in

Figure 2.15 are not feasible: once a successor variable is fixed due to the LNS

relaxation, it cannot be reassigned until another LNS iteration is performed.

Instead of inserting the remaining nodes into existing paths, the solver deals

with several chains of successors, and may only fix the unassigned successor

variables without altering the initial chains of successors. This process is il-

lustrated in Figure 2.17. Compared to the original LNS presented in section

2.3, less flexibility is offered to find a new solution, and the obtained objective

value may be more costly than the one found with the original LNS.

Relax Optimize

Vehicle 1 Vehicle 2 Vehicle 3

Vehicle not yet assigned Depot

Figure 2.17: LNS behavior on a VRP with successor variables. From an ini-
tial solution (left), a relaxed solution is obtained by keeping some successor
variables assignments (middle). This relaxed solution is then optimized by
fixing the remaining successor variables (right).

Some approaches such as [TS18] have instead proposed a relaxation specif-

ically for the successor model, providing more flexibility than the behavior

illustrated in Figure 2.17. In their work, a 𝑘-opt relaxation is proposed, which

removes some edges (i.e. relax successor variables) and restrict the remaining

successor variables to only include their current successor and predecessor
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from the best solution in their domain. This behavior is shown in Figure 2.18

(adapted from [Tho23]). But even this specific relaxation does not allow for

insertions at an arbitrary place within the path given that non-relaxed suc-

cessor variables have their domain being restricted.

0

1 2

3 4

56

7

Variable Domain

succ0 {1}
succ1 {2}
succ2 {7}
succ3 {0}
succ4 {5}
succ5 {6}
succ6 {3}
succ7 {4}

0

1 2

3 4

56

7

Variable Domain

succ0 {1, 3}
succ1 {0, 2}
succ2 {1, 3, 4, 6, 7}
succ3 {0, 2, 4, 6, 7}
succ4 {2, 3, 5, 6, 7}
succ5 {4, 6}
succ6 {2, 3, 4, 5, 7}
succ7 {2, 3, 4, 6}

Relax

Figure 2.18: 𝐾-opt relaxation from [TS18], for a successor model.

If one wants to allow insertions at an arbitrary place within the path,

this may be obtained by reasoning on other kinds of variables than successor

variables. For instance, fixing precedences between nodes (i.e. working with

boolean variables 𝑝𝑖, 𝑗 indicating if a node 𝑖 precedes a node 𝑗 ) instead of direct

successor assignments may help to provide more flexibility, and find better

successor assignments in the optimized solution. However, it requires further

processing of the solution and may introduce more variables.
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2.4.3 Optional Visits

Dealing with optional visits is not always straightforward on complex VRPs.

Even though the subcircuit constraint allows representing nodes outside a

vehicle path, a difficulty may arise depending on the way some constraints

are formulated, as constraints need to be aware that self-loops are permitted

and designate an unvisited node.

Take for instance the case of a VRP involving 𝑉 nodes, temporal con-

straints and optional visits. Assume that each node 𝑣 ∈ 𝑉 is associated to

a service duration 𝑑𝑣 > 0, and that a matrix 𝐷𝑉 ×𝑉 defines transition times

between nodes. The visit time of a node 𝑣 is captured in a variable 𝑇𝑣 , and a

variable 𝑆𝑣 defines its successor. The channeling of visit time can be expressed

by

𝑇𝑆𝑣 = 𝑇𝑣 + 𝑑𝑣 + 𝐷𝑣,𝑆𝑣 (2.14)

which constrains the time visit 𝑇𝑆𝑣 of the successor 𝑆𝑣 of node 𝑣 . If the

transitionmatrix𝐷 contains only positive entries, this implies𝑇𝑆𝑣 > 𝑇𝑣 . Given

that the visits are optionals, the subcircuit is used on the successor variables 𝑆 .

However, this provokes a failure in case nodes are not visited: setting 𝑆𝑣 = 𝑣

(for a self-loop) violates the implied constraint 𝑇𝑆𝑣 > 𝑇𝑣 .

This problem can bemitigated by either (i) adapting the input, setting par-

ticular values for self-loops within the transition matrix (for instance 𝐷𝑣,𝑣 =

−𝑑𝑣 ∀𝑣 ∈ 𝑉 ), or (ii) using boolean variables tracking if the node is visited

or not (replacing (2.14) by (𝑆𝑣 ≠ 𝑣) ⇔ 𝑇𝑆𝑣 = (𝑇𝑣 + 𝑑𝑣 + 𝐷𝑣,𝑆𝑣 )). The latter

case increases the computation time, as it may introduce more variables (for

instance boolean variables tracking expressions of the form 𝑆𝑣 ≠ 𝑣), and adds

more constraints.

2.4.4 Research Questions

Given the challenges introduced previously, this thesis attempts to answer

the following research questions:

1. How to efficiently automate a nearest neighbor value selection
on VRPs?

2. How to integrate LNS with insertions inside CP solvers?

3. How to efficiently deal with optional visits when solving VRPs
with CP?

The first research question is studied in Section 3, by presenting corre-

sponding value selections that are both fast and generic. The last two ques-
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tions are tackled in Section 4, introducing sequence variables, specifically de-

signed to solve VRPs while coping with insertions and optional visits.





Value Heuristics 3
This chapter attempts to answer the first research question: How to efficiently
automate a nearest neighbor value selection on VRPs?

Although CP allows defining VRP models in a declarative way, its perfor-

mance are behind that of other methods. Part of the explanation for CP ineffi-

ciency is the way values are assigned to variables during the search. Existing

CP value heuristics in black-box are either fast, but do not steer the search in

promising direction, or are slow, and their gain in search guidance may not

outweigh the induced computational overhead. This is observed in works

such as [Cap+21], where the cost of selecting an informed value through a

neural network is identified as a bottleneck, and in [FP17], where the fastest

value heuristics fail to deliver the optimal solution on some problems com-

pared to slower.

This can be directly seen on the TSP. Given a TSP instance with 𝑛 cities

and a distance matrix 𝑑 ∈ Z𝑛×𝑛 , a commonly used CP model is

min𝑇𝑜𝑡𝐷 (3.1)

subject to:

circuit(𝑆) (3.2)

𝐷𝑖 = element(𝑑𝑖,∗, 𝑆𝑖) ∀𝑖 ∈ {0..𝑛 − 1} (3.3)

𝑇𝑜𝑡𝐷 = sum(𝐷) (3.4)

It introduces two variables per city: 𝑆𝑖 is the visit occurring after the city 𝑖

in the tour, and𝐷𝑖 the distance between city 𝑖 and its successor 𝑆𝑖 . The circuit

constraint enforces every city to be visited within a single tour (3.2). The

distance𝐷𝑖 between a city 𝑖 and its successor 𝑆𝑖 corresponds to the 𝑆𝑖-th entry

within the line 𝑖 in the distance matrix 𝑑 , enforced with an element constraint

(3.3). The sum of traveled distance 𝑇𝑜𝑡𝐷 is the objective to minimize (3.1),

(3.4).

The 𝑆 variables can be branched on in order to find a solution. However,

if a simple value heuristic method such as MinDom is used, the first found

solution will have an objective value far from the optimum: successor of the

cities are chosen based on their index, which has no regard for the length of

37
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the TSP tour. In contrast, a hand-coded heuristic selecting the nearest neigh-

bor as the successor of the city would find a first solution of better quality,

and also prove optimality faster.

Example 3.0.1. Figure 3.1 shows the behavior betweenMinDom and a hand-

coded heuristic selecting the nearest neighbor of a city as its successor, on a

TSP instance. The first branching decision and the first solution reached are

shown, both of which are obviously better when using a closest successor

heuristic.

The variable selection is assumed to select the city with the smallest index

first. On a TSP instance, given that no failure occurs before finding the first

solution, and that the domain sizes are the same, dynamic variable selection

might default to such selection.
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Figure 3.1: Given a TSP instance (left), the first decision taken by MinDom
(top) and a closest successor value heuristic (bottom). The first solution gen-
erated by each method is shown on the right.

A natural question that arises is whether one can automate the selection

of the nearest successor inside a CP solver, instead of having tomanuallywrite

a search procedure. The answer is yes. This chapter presents black-box value

heuristics developed in the thesis, that not only select the nearest successor on
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a successor model, but also enhance performance on non-routing problems.

Given that many VRPs are modeled in CP on top of a successor model, by

adding more constraints on it, those heuristics also automate nearest neigh-

bor selection on those models. One closely related approach is first described

in section 3.1. Section 3.2 then covers the heuristics developed in this the-

sis, which were published in A. Delecluse and P. Schaus. “Black-Box Value

Heuristics for Solving Optimization Problems with Constraint Programming

(Short Paper)”. In: 30th International Conference on Principles and Practice of
Constraint Programming (CP 2024). Schloss Dagstuhl–Leibniz-Zentrum für

Informatik. 2024

Compared to the publication, this chapter provides more details on the

algorithms involved, implementation considerations, and discuss how they

may be applied on problems without an objective function.

3.1 Existing work: Bound-Impact Value Search

Bound-Impact Value Search (BIVS) [FP17] is a value heuristic for optimization

problems, choosing the value with the best impact on the objective. Its be-

havior is detailed in Algorithm 1. BIVS examines each value 𝑣 in the domain

of the selected variable 𝑥 ∈ X (line 3), assigning 𝑣 to 𝑥 (line 5) and running

the fixpoint algorithm (line 6). If the assignment does not lead to a failure and

increases the objective’s lower bound (⌊D(𝑜𝑏 𝑗)⌋), the value is considered for
retention (line 7). The process is encapsulated within saveState(X, C) and
restoreState(X, C) operations (lines 4 and 10), ensuring that the solver’s

state is reset before each new trial. In the original paper, the authors show

that this approach manages to automate the nearest neighbor selection on the

TSP.

3.2 Reducing Bound-Impact Value Search Cost

Although BIVS is effective in steering the search towards high-quality so-

lutions, the time complexity for selecting a value for variable 𝑥 in the BIVS

algorithm is Θ(F · |D(𝑥) |), with F as the fixpoint algorithm’s complexity.

As [ALP23] notes, controlling this high computation cost is challenging. This

section proposes two methods to reduce this complexity: one by lowering

the cost of the fixpoint algorithm and the other by reducing the frequency of

its calls. However, these changes do not guarantee identical outcomes as the

original BIVS.



40 Chapter 3. Value Heuristics

Algorithm 1: Bound-Impact Value Selector, adapted from [FP17].

Input : X: variables, C: constraints, 𝑥 : branching variable, 𝑜𝑏 𝑗 :
objective variable

Ouput: bestV, the value to assign to the variable 𝑥 .

1 bestV← ⌊D(𝑥)⌋
2 bestBound←∞
3 for 𝑣 ∈ D(𝑥) do
4 saveState()
5 D(𝑥) ← {𝑣}
6 success← fixpoint(X, C)
7 if success and ⌊D(𝑜𝑏 𝑗)⌋ < bestBound then
8 bestBound← ⌊D(𝑜𝑏 𝑗)⌋
9 bestV← 𝑣

10 restoreState()
11 return bestV

3.2.1 Restricted Fixpoint

The Restricted Fixpoint (RF) approach assesses the impact on the objective by

focusing solely on a limited set of constraints. Specifically, it considers only

the constraints that are located on the shortest paths from the selected vari-

able to the objective variable within a bipartite variables-constraints graph.

In this graph, variables and constraints are nodes, connected by edges if the

variable is within the scope of the constraint. For each variable, we precom-

pute all constraints on these paths. This method reduces computation costs as

it involves fewer constraints, but it may be less informative and risk missing

potential failures.

Example 3.2.1. Consider the TSP model from (3.1)-(3.4). A TSP with 4 cities

is shown in Figure 3.2 and its variables-constraint graph in Figure 3.4. When

selecting values for 𝑆0 using RF with BIVS, only 2 constraints are considered

per iteration, compared to 6 without RF.

3.2.1.1 Implementation

The RF may be implemented in several ways inside a solver. Some considera-

tions regarding the shortest path computation are first covered before diving

into the RF itself .

Shortest Paths Regarding the shortest paths between each variable and

the objective, they are computed once, at the root node of the search. Those
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Figure 3.2: A TSP instance with 4
cities to visit. The distances are
shown on the edges.
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Figure 3.3: When fixing D(𝑇𝑜𝑡𝐷) to
{48}, all successors points towards
their nearest city. This violates the
circuit constraint.

𝑆0 𝑆1 𝑆2 𝑆3 𝐷0 𝐷1 𝐷2 𝐷3 TotD

circuit element0 element1 element2 element3 sum

Figure 3.4: Constraints and variables of the TSP instance from Figure 3.2.
Variables and constraints in blue are located on the shortest path to the ob-
jective 𝑇𝑜𝑡𝐷 when considering variable 𝑆0.

paths do not change under the assumption that no constraint with arity
1
> 1

is added onto the problem during the search exploration, which is commonly

the case in CP solvers. In other situations, with a specific branching scheme

that adds constraints with arity > 1, recomputing the shortest paths may be

worthwhile.

One naive way to retrieve the relevant constraints related to each variable

would be to store, for each variable, a set of all constraints on the shortest

path. Obviously, this approach consumes a lot of memory on problems with

a large constraint network.

To reduce thememory footprint, retrieving the constraints on the shortest

paths between each variable and the objective is instead implemented using a

shortest path tree. Each node in the constraint network contains a list of their

direct successors in the shortest paths leading to the objective. Retrieving

the subset of relevant constraints can then be done by traversing the stored

shortest paths. This process can be computed using a breadth-first search

over the constraint network, starting from the objective to minimize. The

time spent computing this shortest path tree is negligible compared to the

solving time of a COP instance.

Restricted Fixpoint For the restricted fixpoint, they are two main ways

to implement it: a non-intrusive method that does not require a rewrite of

1
the arity of a constraint is the number of variables in its scope.
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existing trail-based CP solvers, and an intrusive one where a new method

must be added to the solver API.

1. The non-intrusive method relies on the temporary deactivation of

constraints. For performance reasons, solvers typically support such

deactivation, for instance when it can be detected that no filtering may

be performed by a constraint anymore (e.g. a constraint enforcing 𝑥 < 𝑦

with D(𝑥) = {1, 2},D(𝑦) = {3, 4} cannot perform any future filter-

ing, and may be deactivated even though the variables in its scope are

not fixed). Constraint deactivation is considered a reversible operation,

which is the case in MiniCP and Choco-Solver [MSV21; PF22]. Using

this deactivation, a restricted fixpoint may be implemented by either:

■ First storing all constraints along the shortest paths in a set, then

looping over all constraints registered in the solver, and deacti-

vating the ones outside the set.

■ Traversing the shortest paths using a Breadth-First Search, start-

ing from the branching variable and going to the objective. When-

ever the BFS processes a variable, all constraints attached to it are

examined. If a constraint does not lie on the shortest path to the

objective, it is deactivated. Whenever the BFS processes a fixed

variable, or a constraint already deactivated, it is skipped, as no

filtering may occur by considering it.

This deactivation of irrelevant constraints w.r.t. the RF is surrounded

by save and restore operations, to ensure that constraints remain active

after the RF computation.

2. The intrusive method needs to enrich the solver API by implement-

ing a new function. This function takes as input a list of propagators

to consider, and triggers a fixpoint considering only those propagators,

while ignoring the other ones registered in the solver. This can be im-

plemented by introducing a restricted fixpoint mode in the solver. If the

solver is in restricted fixpoint mode, only constraints in the provided

list (the shortest paths in our case) are triggered.

The first approach is more suited when the internals of the solvers cannot

be changed. The second one is more effective as it does not require the tem-

porary deactivation of constraints, which adds a low but noticeable overhead

on large constraint networks, due to the parsing of additional propagators to

deactivate.

Given that the last conflict heuristic is commonly used in CP solvers [Lec+09],

whenever a failure occurs, a variable is branched twice in a row. Therefore,

it might be worthwhile to use caching, and store the shortest path computed
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at the last call. When querying the shortest paths for a variable 𝑥 , they may

be retrieved in constant time in such situations.

Given that this approach modifies successively small portions of the do-

mains, and on a small set of variables, it is more suited in solvers relying on

trailing. With copying, the cost of repeatedly creating many CSPs at each

search node would prevent the usage of this heuristic, which is also the case

with the original BIVS.

3.2.2 Reverse Look-Ahead

The Reverse Look-Ahead (RLA) strategy reduces the number of calls to the

fixpoint computation by restricting optimistically the domain of the objective

and observing the effects on the variable domain D(𝑥), rather than fixing

𝑥 directly. It is similar to the Destructive Lower Bound used in scheduling

[KS99] and can also tighten bounds on the objective.

Algorithm 2 outlines RLA. A value 𝛿 controls the domain size of the ob-

jective variable during the fixpoint computation, starting with a value of 1 to

fix the objective to its minimum value. Several iterations may be performed,

each increasing 𝛿 until the fixpoint computation succeeds. At this point, the

minimum value from the domain of 𝑥 is returned at line 11. The value of

𝛿 doubles at each iteration, resulting in an exponential evolution. Note that

when the fixpoint computation fails, the lower bound of the domain of the

objective variable can be safely increased (line 14).

Example 3.2.2. Consider the same situation as Example 3.2.1, shown in Fig-

ure 3.2. The initial fixpoint yields D(𝐷𝑖) = {12, 16, 20} ∀𝑖 ∈ {0..𝑛 − 1} and
D(𝑇𝑜𝑡𝐷) = {48, . . . , 80}. When using RLA to choose a value for 𝑆0, the fol-

lowing iterations occur:

1. The fixpoint is triggered with D(𝑇𝑜𝑡𝐷) = {48}. This means that the

successor of every city must be the closest neighbor, violating the cir-

cuit constraint (cf Figure 3.3). The iteration fails and the lower bound

of the objective is now set to 49 for the subtree to consider.

2. 𝛿 = 2 and D(𝑇𝑜𝑡𝐷) = {49, 50}. Similarly, this fails and sets the lower

bound to 51.

3. 𝛿 = 4 and D(𝑇𝑜𝑡𝐷) = {51, . . . , 54}. The fixpoint proceeds without

failure, resulting in D(𝑆0) = {2, 3}. Value 2, the nearest neighbor, is

picked and the state is restored while keeping the lower bound of the

objective to 51. Finally, 2 is returned (lines 9 to 11).

The time complexity of RLA is Ω(F ) in the best case, if only one iteration
needs to be performed, and O(F · log

2
|D(𝑜𝑏 𝑗) |) in the worst case. Moreover,
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Algorithm 2: Reverse Look-Ahead
Input : X: variables, C: constraints, 𝑥 : branching variable, obj:

objective variable

Ouput: 𝑠𝑢𝑐𝑐𝑒𝑠𝑠: boolean indicating search node expandability, 𝑣 :

assigned value for 𝑥

1 𝛿 ← 1

2 success← true
3 while success do
4 saveState()
5 ⌈D(obj)⌉ ← min(⌈D(obj)⌉, ⌊D(obj)⌋ − 1 + 𝛿)
6 success← |D(obj) | > 0

7 if success then
8 if fixpoint(X, C) then
9 𝑣 ← ⌊D(𝑥)⌋

10 restoreState()
11 return (true, 𝑣)
12 else
13 restoreState()
14 ⌊D(obj)⌋ ← ⌊D(obj)⌋ + 𝛿
15 success← |D(obj) | > 0

16 𝛿 ← 𝛿 ∗ 2

17 else
18 restoreState()
19 return (false, 0)

RF can also be used with RLA, meaning that the complexity of the fixpoint

can be lowered.

Example 3.2.3. We reuse the model from Example 3.2.2. Initially, RLA re-

stricts D(𝑇𝑜𝑡𝐷) = {48} and runs the RF. This scenario suggests all succes-

sors should be nearest neighbors, which is infeasible given the circuit con-

straint (see Figure 3.3). However, when considering only the shortest path

constraints (the sum constraint and one element constraint, cf Figure 3.4),

the failure is missed. Consequently, the domain of 𝑆0 becomes {2} (its closest
neighbor), and 2 is returned. Compared to the scenario in Example 3.2.2, only

one iteration has been performed (being less costly) but the heuristic itself

could not tighten the bounds of the objective.

An attentive reader would say that the previous examples on the TSP are

not 100% convincing. Indeed, it suffices to sort the city successors before the

beginning of the search based on their distance, and use as value selection
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the first available successor in the sorted list. This is because the theoreti-

cally best value for each variable in the TSP, according to its direct impact on

the objective, does not depend on the values that other variables may take,

and can be computed at the root node of the search tree. This is akin to the

objective landscapes presented in [Lab18] (which were not directly applicable

on the TSP, as explained in section 2.2.2.4).

However, the presented heuristics actually reconsider the best value at

each node in the search tree, allowing them to perform informed decisions

not only on the TSP but on other problems as well. For instance, in prob-

lems with time-dependent transitions, the best successor for a city depends

on the time at which the departure occurs. Therefore, there is no absolute best

successor for the successor variable: it depends on the departure time. The

impact of reconsidering the best value at each node is better illustrated in the

next example (which is not a VRP but was chosen for its relative simplicity).

Example 3.2.4. Let us consider a variant of the bin packing problem. It con-

sists in placing 𝐼 items within 𝐵 bins, each item 𝑖 ∈ {0, . . . , 𝐼 − 1} having a

given weight 𝑤𝑖 . The objective is to minimize the maximum load occurring

in any bin. A CP model for this problem can be as follows:

minmaxL (3.5)

subject to:

maxL = maximum(𝐿0, 𝐿1, . . . , 𝐿𝐵−1) (3.6)

𝐿𝑏 =

𝐼−1∑︁
𝑖=0

𝑤𝑏,𝑖 ∀𝑏 ∈ {0..𝐵 − 1} (3.7)

𝑤𝑏,𝑖 = 𝑤𝑖 ∗ 𝑦𝑏,𝑖 ∀𝑖 ∈ {0..𝐼 − 1}∀𝑏 ∈ {0..𝐵 − 1} (3.8)

𝑦𝑏,𝑖 ↔ (𝑥𝑖 = 𝑏) ∀𝑖 ∈ {0..𝐼 − 1}∀𝑏 ∈ {0..𝐵 − 1} (3.9)

The main decision variables are the integer variables 𝑥𝑖 , each having initial

domain {0, . . . 𝐵−1}, and representing in which bin item 𝑖 must be placed. The

presence of item 𝑖 in bin 𝑏 is represented by a boolean variable 𝑦𝑏,𝑖 through

a reified equality constraint (3.9): 𝑦𝑏,𝑖 = 1 if and only if 𝑥𝑖 = 𝑏. Each boolean

variable 𝑦𝑏,𝑖 is used to capture the weight 𝑤𝑏,𝑖 occupied by item 𝑖 in bin 𝑏:

either 𝑤𝑖 if 𝑦𝑏,𝑖 = 1, and 0 otherwise (3.8). The total load 𝐿𝑏 in a bin 𝑏 is

summed over the weights𝑤𝑏𝑖 (3.7). The objective consists in minimizing the

maximum load (3.5), computed based on the load 𝐿𝑏 of each bin 𝑏 (3.6).

The best value to assign to a variable 𝑥𝑖 depends on the current load in

the bins. Therefore, choosing in advance the best values for each variable at

the root of the search tree is irrelevant: when all bins are empty, they are

equally valuable and no value dominates the other ones. Therefore, MinDom
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or an initial ranking should both favor to put items in the bin with the small-

est index (assuming that ties are broken by selecting the smallest value). In

contrast, BIVS(+RF) and RLA(+RF) would both favor to put items in a bin that

increases the maximum load by the smallest amount. This is shown on Fig-

ure 3.5: given an instance to solve, the first decision with any heuristic is to

put the first item in bin 0. With the second decision, MinDom or an initial

ranking keeps putting items in bin 0, while BIVS(+RF) and RLA(+RF) will try

to spread out the items across the bins.
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2

1

0

Items Bin 0 Bin 1
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Instance

Figure 3.5: Value heuristics behavior on a bin packing instance.

Note that a global BinPacking constraint [Sha04] is commonly present in

modern solvers. The behavior of BIVS(+RF) and RLA(+RF) would be the same

as using this global constraint instead of the presented model.

3.3 Experiments

To assess the performance of the methods, two main settings were consid-

ered. The first one analyzes the TSP and two other classical discrete problems

easily modeled with CP. The second one reports the performance on various

optimization problems, using the XCSP
3
2023 competition [Bou+16b; ALL23].

The implementationwas done in Java in the Choco-Solver (version 4.10.5),

a state-of-the-art general purpose constraint programming solver [PF22]. In

all settings, instances needing more than 16GB were discarded. All experi-
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ments were conducted using two Intel(R) Xeon(R) CPU E5-2687W in single-

threaded mode. DFS was used, with last conflict [Lec+09] with DomWDeg

[Bou+04] as the fallback heuristic for the variable selection heuristic, a pop-

ular default selection. Ties for the value selection are broken by selecting the

smallest value. Ties for the variable selection are broken randomly and the

same seed for random number generation was used. The timeout was set to

30 minutes. Experiments were run in parallel using GNU Parallel [Tan21].

3.3.1 Fundamental Problems

Three fundamental problems are studied. (i) The TSP and the instances from

TSPLib [Rei91]. (ii) The JobShop and the instances from [VRF15]. (iii) The

Quadratic Assignment Problem and the instances from [24c]. For each model,

the standard models are used. The JobShop model branches on precedences

like in [GHM09]. A precedence variable 𝑏𝑖 𝑗 telling if task 𝑖 is executed before

task 𝑗 only exists if the id of task 𝑖 is smaller than the id of task 𝑗 (i.e., 𝑖 < 𝑗 ). On

the instances from [VRF15], this should not a priori favor a particular value for
𝑏𝑖 𝑗 . For each model a custom white-box value heuristic is used called Greedy

in the results, with the following behavior

TSP the value corresponding to the closest successor is selected.

QAP the facility to open is placed at the location minimizing the weighted

flow with already placed facilities.

JobShop when choosing a value for a precedence variable𝑏𝑖 𝑗 , telling if a task

𝑖 is executed before another task 𝑗 , the precedence value selected is the

one yielding the most slack, describing how much time is still available

between the two tasks. This was proposed in [SMV25].

In total, the value selectors analyzed are

Min choosing the smallest value in the domain of the variable.

BIVS the original algorithm as proposed in [FP17], using the author’s imple-

mentation in Choco-solver. In this implementation, when the domain

size of a variable is larger than 100, only the minimum and maximum

values of the domain are considered by BIVS.

BIVS+RF indicates BIVS but with the restricted fixpoint, presented in sec-

tion 3.2.1.

RLA depicts the Reverse Look-Ahead.

RLA+RF depicts the Reverse Look-Ahead using the restricted fixpoint.
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Regarding the RF implementation, it uses the non-intrusivemethod presented

in Section 3.2.1.1.

One criterion used to compare the value selection heuristics is the primal

gap introduced in [Ber13].

𝛾 (obj) =


0 if obj = obj∗

1 if no solution has been found

|obj−obj∗ |
max({ |obj |, |obj∗ | } ) otherwise

(3.10)

The primal gap 𝛾 gives a value between 0 and 1 measuring the gap be-

tween the value of a solution found obj and the best found solution obj∗ dur-
ing the experiment. A value close to 0 means that the solution found is the

best one found, while a value of 1 indicates that no solution was found.
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Figure 3.6: Primal gaps in percentage over time (top) and nodes in the search
tree (bottom) averaged over all instances.

Heuristic performance varies by problem (Figure 3.6). For TSP, RLA+RF

matches the greedy heuristic, while BIVS+RF lags slightly due to considering

bounds for domain sizes over 100; without this restriction, BIVS+RF performs

comparably to RLA+RF. In QAP, BIVS and its RF variant outperform others,

with RF significantly speeding up BIVS. For JobShop, RLA surpasses BIVS but

is less effective than MIN due to the cost of fixpoint calls.
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Figure 3.7: Rate of nodes explored over time as a SinaPlot [Sid+18], repre-
senting individual observations over the instances as dots, as well as density
estimates.

The addition of RF to BIVS results in speedups for the TSP and the QAP,

with more nodes in the search tree explored over time, as confirmed by Figure

3.7). The average solution quality across instance sizes is maintainedas shown

in Figure 3.8 and supported by Figure 3.6 where BIVS falls behind BIVS+RF.

Conversely, it slows performance on JobShop. On this problem, the additional

cost of scanning all constraints and potentially deactivating some, in the hope

of reducing cost on the two iterations performed by BIVS (as the precedence

variables have a domain of size 2) does not offer benefits compared to consid-

ering all constraints.

3.3.2 XCSP3

We consider instances from the XCSP
3
COP 2023 competition [Bou+16b;

ALL23]. The instances requiring more than 32GB were discarded, leaving

18 problems and 232 instances.

Table 3.1 displays gaps and number of solutions found per problem, with

the average gap over time shown in Figure 3.9. Performance varies greatly

across problems, with no single heuristic outperforming others universally.

However, adding RF to BIVS reduces the average gap and aids in finding so-

lutions missed otherwise. Similar benefits, though smaller, are observed with

RLA. On average, RLA outperforms BIVS, with RF enhancing both methods.

Min excels in finding feasible solutions, mostly attributed to its constant time

complexity. Such fast selection allows exploring more nodes in the same

amount of time, as shown in Table 3.2 presenting the rate of nodes explored



50 Chapter 3. Value Heuristics

10−1 101 103

BIVS+RF

10−1

100

101

102

103

T
im

e
(s

)

B
IV

S

TSP

10−1 101 103

BIVS+RF

10−1

100

101

102

103

QAP

100 101 102 103

BIVS+RF

100

101

102

103

JobShop

0 25 50 75 100

BIVS+RF

0

25

50

75

100

G
a
p

(%
)

B
IV

S

0 25 50 75 100

BIVS+RF

0

25

50

75

100

0 25 50 75 100

BIVS+RF

0

25

50

75

100

0.0k 1.3k 2.6k

#variables

0.2k 23.5k 46.7k

#variables

0.6k 13.1k 25.6k

#variables

Figure 3.8: Comparison of BIVS and BIVS+RF regarding the time to find the
first feasible solution (top, in seconds) and its corresponding gap (bottom,
in percentage). Each dot represents an instance across problems: TSP (left),
QAP (center), and JobShop (right). Dots on the diagonal indicate equal per-
formance between methods. Dots above the diagonal show that BIVS was
slower or found poorer solutions. Crosses denote timeouts by at least one
method, resulting in a 100% gap.

per second. Having a faster value selection heuristic gives more opportuni-

ties to the variable selection heuristic, in the same amount of time, to set its

weights related to encountered failures, allowing for better learning.

In Figure 3.9 two Virtual Best Solver entries are presented: "VBS (old)"

computed from previous selectors available in Choco (BIVS,Min, middle, Max

and random domain selection) and "VBS (new)" adding RLA and RF-based

methods. The 3.87% decrease in the final gap demonstrates that RLA and

RF explore the search space differently than traditional heuristics, enhancing

portfolio efficiency. The figure also compares BIVS(+RF) with BIVS
★
(+RF),

where the latter considers all domain values — not just the bounds when

the domain size exceeds 100 — showing improved performance with RF, sug-

gesting the removal of the domain size consideration. Both BIVS+RF and

BIVS
★
+RF outperform their non-RF versions, indicating their superior effi-

ciency. Notably, the average gap by BIVS+RF at 100.0s is matched by BIVS
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Prob. (#inst.) Min BIVS BIVS+RF RLA RLA+RF

AAL (20) 95.00 (1) 90.00 (2) 100.00 (0) 95.00 (1) 95.00 (1)

CC (20) 61.29 (9) 57.17 (9) 65.48 (8) 62.67 (8) 54.48 (11)
GBACP (20) 78.86 (11) 61.43 (8) 79.69 (10) 69.54 (9) 85.51 (9)

GMKP (15) 49.74 (15) 6.78 (14) 6.81 (14) 26.57 (12) 20.26 (13)

HCPizza (10) 33.56 (10) 34.91 (10) 34.43 (10) 34.67 (10) 34.62 (10)

Hsp (18) 0.00 (18) 5.56 (17) 5.56 (17) 5.56 (17) 0.00 (18)
KM (15) 50.84 (8) 57.32 (7) 43.96 (9) 56.01 (7) 50.84 (8)

KE (14) 44.63 (14) 85.71 (3) 51.11 (10) 43.68 (13) 52.79 (10)

LSS (9) 66.76 (6) 66.83 (6) 66.83 (6) 45.56 (5) 34.44 (6)
PSP1 (8) 100.00 (0) 100.00 (0) 87.50 (1) 100.00 (0) 100.00 (0)

PSP2 (8) 87.50 (1) 87.50 (1) 87.62 (1) 87.50 (1) 87.66 (1)

PP (7) 57.14 (3) 57.14 (3) 57.14 (3) 57.14 (3) 57.14 (3)

RIP (12) 5.06 (12) 6.31 (12) 4.59 (12) 3.24 (12) 4.78 (12)

RM (9) 100.00 (0) 100.00 (0) 100.00 (0) 100.00 (0) 100.00 (0)

SREFLP (15) 7.27 (15) 3.08 (15) 7.44 (15) 8.78 (15) 7.72 (15)

Sonet (16) 1.40 (16) 2.28 (16) 3.42 (16) 2.42 (16) 3.15 (16)

TSPTW1 (8) 87.81 (1) 100.00 (0) 87.84 (1) 87.81 (1) 87.50 (1)
TSPTW1 (8) 75.19 (2) 87.50 (1) 75.19 (2) 75.42 (2) 75.24 (2)

All (232) 52.02 (142) 51.04 (124) 50.23 (135) 49.85 (132) 49.52 (136)

Table 3.1: Performance between themethods for each problem. Each column
shows the average primal gap over all instances, in percentage, and the in-
stances where at least one feasible solution was found, in parentheses. Best
results are highlighted in bold if at least one heuristic was outperformed.

only at 938.32s, demonstrating its significant speed advantage.

3.4 Extending to Satisfaction Problems

The previous section presented BIVS+RF and RLA(+RF), which lead to the

same decisions as nearest neighbor value heuristics on VRPs. They are also

applicable directly within CP solvers for other kinds of problems than VRPs.

A natural question that arises is whether those techniques can be applied

on CSPs instead of COPs. While this slightly falls outside the scope of this

chapter (the goal would now be to design general-purpose value heuristics

for CSPs), this section still presents some considerations if one attempted to

tackle CSPs with those techniques.

Minimizing Constraint Violation A naive way to render the techniques

compatible with CSPs is through constraints reifications and penalties. One

can transform a CSP into a COP, by reifying some constraints. Every boolean

variable introduced during the reification can be mapped to a penalty, set

to 1 if the constraint is violated, and to 0 if it holds. The objective of the
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Problem (#instances) Min BIVS BIVS+RF RLA RLA+RF

AAL (20) 1962.41 579.70 1634.72 1700.13 1543.85

CC (20) 8602.77 1795.75 5395.77 3619.87 7815.56

GBACP (20) 9574.80 4506.79 8721.60 3660.39 9949.38
GMKP (15) 1738.40 1105.62 1299.89 987.88 497.97

HCPizza (10) 16842.26 7639.15 7455.64 8807.99 8413.84

Hsp (18) 312.64 172.56 330.47 108.16 384.77
KM (15) 372.96 20.08 268.26 135.81 226.35

KE (14) 2418.85 794.51 2323.79 2674.80 1520.95

LSS (9) 976.83 632.34 1107.52 304.01 989.66

PSP1 (8) 465.32 317.26 588.58 124.02 142.69

PSP2 (8) 2361.15 935.21 1178.51 701.76 769.81

PP (7) 1036.62 681.08 968.96 1020.07 1084.41
RIP (12) 4179.38 893.40 2506.77 2742.59 3192.95

RM (9) 300.94 132.32 207.19 137.24 302.84
SREFLP (15) 719.83 328.75 559.33 444.72 260.16

Sonet (16) 13842.64 7481.46 9189.45 9037.57 8501.42

TSPTW1 (8) 2033.02 383.63 1393.55 649.65 732.01

TSPTW2 (8) 2008.05 660.96 1535.98 1005.32 1045.61

All (232) 4303.93 1769.54 2988.33 2323.61 3139.58

Table 3.2: Average rate of nodes explored over time (per second) between the
methods for each problem.

newly formed COP is then the minimization of the sum of those penalty vari-

ables. During the search, the value chosen for a variable 𝑥 with RLA(+RF) and

BIVS(+RF) would be the one that violates the penalties less.

However, this procedure is not efficient for several reasons. First, a choice

must be made regarding the constraints to reify, as reifying all of them might

remove the majority of the filtering strength, as highlighted in [Bjö+20]. Sec-

ond, for RF, the introduced objective is likely connected to a large portion

of the constraints. Therefore, the shortest paths between a variable and the

objective are likely to be of very small length, and may involve only the con-

straints directly linked to the variable. This is for instance the case when all

constraints are reified, and the shortest paths are of length 2 (one constraint

for going to the introduced penalty, and one for the sum of penalties). Last,

in this setting, we are in reality interested in two cases: generating a feasible

solution (i.e. with a penalty sum of 0) or proving that none exists (in which

case reifying the constraints would hinder the propagation strength). In other

words, there are only two valuable cases in this setting: a zero penalty sum

or a non-zero penalty sum, and such reification might be too costly to encode

this setting.

Reifing constraints and reducing their penalties shares similarities to the
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Figure 3.9: Average primal gap over time (top) and over number of nodes
(bottom) on the XCSP3 instances, in percentage. The right part shows only
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sorted by the final gap observed.

procedure proposed in [Bjö+20]. Their work describes a more involved strat-

egy, where some hard constraints were softened. A softened constraint can be

regarded as a reified constraint, where the penalty introduced is an integer

variable instead of a boolean variable, whose domain gives more informa-

tion on the constraint violation (see [MRS06] for more detailed explanations).

When solving a problem using their approach, the solver considers both the

hard and softened constraints, and deactivates the hard constraint whenever

a failure occurs. This procedure renders the application of LNS possible as we

are working with a COP, and allows benefiting from both branch-and-bound

and from the propagation of the hard constraint. The work from [Sch13] also

proposes to use LNS to minimize the sum of penalty variables. Part of their

approach proposes to target one individual penalty at each LNS iteration, in-
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stead of directly minimizing the penalty sum. In either case, the mentioned

methods are mainly meant to be used in an LNS setting, therefore giving up

on exact methods, and the value heuristic in their constructed COP is still

MinDom.

Dedicated Approach to CSP Instead of working with penalties, it might

be worthwhile to opt for a strategy specifically dedicated to CSPs for value

selection to integrate the RF. Compared to RF on COPs:

■ The objective consists in maximizing the remaining search space, es-

timated as the Cartesian product of the domain size of the variables.

■ The shortest paths are computed between a variable and the

"strongest" identified constraint. Strongest might have different inter-

pretations, such as the constraint responsible for the largest number

of failures, or the one that provoked the majority of filtering on the

domains.

Given the absence of variable corresponding to the objective, RLA cannot be

used in this setting. With BIVS+RF, the value chosen for a variable 𝑥 would be

the one that maximizes the remaining search space, estimated after filtering

of the strongest constraint and a few other ones lying between it and 𝑥 and

on the constraint network.

There are some similarities between this procedure and Belief Propaga-

tion, where values are selected as the ones maximizing the probability to ap-

pear in a solution [Pes19]. The key difference is the absence of marginal prob-

ability to estimate for the propagators here. While less precise, this method

does not suffer from the damping effect present in BP, where probability esti-

mates may fluctuate significantly between iterations. In addition, BP requires

computing and maintaining probabilities for each value-variable pair, mak-

ing it costly on large problems. In comparison, the proposed method does

not need to record values for all such pairs. Lastly, it does not require imple-

menting dedicated algorithms per constraint, needed for approximating the

distributions in BP.

There is a stronger similarity with impact-based search [Ref04] and

activity-based search [MV12a], which also selects values having the smallest

domain reduction on other variables, or values having modified the fewest

number of variables. One difference is that those searches, when used for

value selection, rely on past computation at previous search nodes to select

values. Moreover, they need to store the impact of each value, whereas such

storage is not needed with this approach.
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3.5 Conclusion

Deriving effective, generic value heuristics that balance speed and informa-

tiveness remains challenging. BIVS stands out among these approaches, yet

its cost limits its applicability in certain scenarios. By incorporating a re-

stricted fixpoint in the look-ahead process and employing a reverse look-

ahead strategy, costs are significantly reduced, making previous restrictions

on BIVS usage less relevant. On problems such as the TSP, the proposedmeth-

ods offer performance on par with the white-box value selection that chooses

nearest neighbors. The proposed methods do not require any training, are

well suited for black-box settings, and substantially improve performance.

When utilized alone or within a portfolio approach, these strategies continue

to enhance the efficiency of solving COPs.

Some considerations for generalizing those techniques to CSPs were pre-

sented in section 3.4. Given that they are slightly outside the initial scope of

this chapter, which was to design value heuristics for VRPs, they were not

experimentally validated. Future work may be conducted to assess whether

those techniques are worth considering.





Sequence Variables 4
This chapter attempts to answer the research questions:

■ How to integrate LNS with insertions inside CP solvers?

■ How to efficiently deal with optional visits when solving VRPs with CP?

Both of those questions will be tackled by studying insertion sequence vari-

ables.

Insertion sequence variables were first introduced in [TKS20] to tackle

complex VRPs. I continued the work from Thomas, Kameugne, and Schaus

by changing the domain computed by those variables, and improved the ob-

tained solutions on several VRPs. This led to the publication A. Delecluse, P.

Schaus, and P. Van Hentenryck. “Sequence Variables for Routing Problems”.

In: 28th International Conference on Principles and Practice of Constraint Pro-
gramming (CP 2022). Schloss Dagstuhl-Leibniz-Zentrum für Informatik. 2022

Since then, sequence variables have changed quite a lot. This chapter

is heavily based on a journal paper to be published, introducing the newest

version of those variables, in A. Delecluse, P. Schaus, and P. VanHentenryck.

“Sequence Variables: A Constraint Programming Computational Domain for

Routing and Sequencing”. Manuscript in preparation. 2025

Sequence variables are first presented from a practical point of view on

a challenging VRP in section 4.1. Afterward, the domain of a sequence vari-

able is introduced in Section 4.2, followed by sequence-specific constraints

in Section 4.3 and consideration on the search in Section 4.4. Once all those

concepts are introduced, differences with previous versions are highlighted

in section 4.5. Section 4.6 evaluates those variables on several optimization

problems. Lastly, Section 4.7 discusses limitations and future work.

4.1 Introduction

Existing CP approaches struggle to handle optional visits and do not sup-

port insertion-based search strategies, which are crucial for quickly obtain-

ing high-quality solutions. To address this, we introduce a sequence-based

computational domain that enables both optional visits and insertion-based

searches. Let us first demonstrate its usage for modeling the Dial-A-Ride

Problem (DARP) and searching for solutions with an insertion-based search.

57
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The DARP is defined over a graph 𝐺 = (𝑉 , 𝐸), the nodes being trans-

portation points. A distance matrix 𝒅 indicates the distance between nodes,

and the objective is to minimize the total routing cost. The set of 𝐾 available

vehicles departs from a common depot, fulfill a subset of the 𝑅 transporta-

tion requests in the problem, and return to the common depot. Each request

𝒓𝑖 ∈ 𝑅 is composed of a pickup 𝒓+𝒊 ∈ 𝑉 and its corresponding drop off location

𝒓−𝒊 ∈ 𝑉 . Several constraints restrict the types of travel that can be performed.

Each node 𝑣𝑖 ∈ 𝑉 to be visited (i.e. the depot, each pickup and drop location)

has a service duration 𝒔𝑖 for visiting it, and a given time window: the visit

must happen within [𝑎𝑖 , 𝑏𝑖]. Additionally, the ride time a customer 𝒓𝑖 ∈ 𝑅
spends in its vehicle is limited, ensuring the time from pickup 𝒓+𝒊 to drop-off

𝒓−𝒊 does not exceed a predefined time limit 𝒕𝑖 > 0. In addition to restricting

the ride time, the route duration is also constrained: the total time between

departing and returning to the depot cannot exceed a set limit 𝒕𝑑 > 0. Finally,

processing a transportation request 𝒓𝑖 ∈ 𝑅 consumes a load of 𝒒𝑖 > 0 in a

vehicle, whose limited capacity 𝑐 cannot be exceeded.

The problem is depicted in Figure 4.1, which only presents the location of

nodes. Time windows are not represented to improve readability.

Pickup Drop Depot

Vehicle 1 Vehicle 2

Figure 4.1: Example of a DARP instance (left) and a possible solution (right).

The full model and the search are given next, illustrating the CP = model
+ search paradigm. The precise semantics of each constraint does not need to

be understood in detail at this stage.
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The Model
min

∑︁
𝑘∈𝐾

Dist𝑘 (4.1)

subject to:

Distance(Route𝑘 , 𝒅,Dist𝑘 ) ∀𝑘 ∈ 𝐾 (4.2)

TransitionTimes(Route𝑘 , (Time), 𝒔, 𝒅) ∀𝑘 ∈ 𝐾 (4.3)

Cumulative(Route𝑘 , 𝒓+, 𝒓−, 𝒒, 𝑐) ∀𝑘 ∈ 𝐾 (4.4)∑︁
𝑘∈𝐾
R𝑣 (Route𝑘 ) = 1 ∀𝑣 ∈ 𝑉 (4.5)

Time𝒓−𝒊 − Time𝒓+𝒊 − 𝒔𝒓+𝒊 ≤ 𝒕𝑖 ∀𝑟𝑖 ∈ 𝑅 (4.6)

Time𝜔𝑘
− Time𝛼𝑘 ≤ 𝒕𝑑 ∀𝑘 ∈ 𝐾 (4.7)

This model relies on an insertion-based sequence variable Route𝑘 for each
vehicle𝑘 ∈ 𝐾 . It represents the sequence of nodes visited by vehicle𝑘 , starting
at the depot and ending at the depot. The objective consists in minimizing the

sum of traveled distance (4.1). The travel length of each vehicle𝑘 ∈ 𝐾 is linked

in (4.2) to an integer variable Dist𝑘 , while constraint (4.3) enforces the visit
of each node 𝑣 ∈ 𝑉 during its time window (Time)𝑣 , an integer variable. The

capacity available within a vehicle is constrained through (4.4). Constraint

(4.5) ensures that every node 𝑣 ∈ 𝑉 is visited exactly once. Lastly, (4.6) and

(4.7) enforce the maximum ride time and the maximum duration of the route,

respectively.

The Search In vehicle routing, two main search strategies are commonly

used. The nearest neighbor heuristic sequentially appends the closest un-

visited node to the current sequence. The insertion-based heuristic selects

a node and inserts it at the position that minimizes the cost increase. As

shown in [RSL77], insertion-based construction heuristics are particularly ef-

fective in avoiding the long edge effect, where a very long final connection

is required to close a tour, a common issue with nearest neighbor strategies.

An insertion-based branching procedure for the DARP is presented in Algo-

rithm 3.

The branching strategy prioritizes the unvisited request 𝒓 𝒊 with the fewest
remaining feasible insertions (line 3), using the method nInsert(𝑣) returning
the number of insertions for node 𝑣 . This is in line with the first-fail principle,
which aims to create the shallowest possible search tree. Given this request,

all insertion points 𝐼+ for its pickup 𝒓+𝒊 in a given sequence variable Route𝑘
are retrieved (line 6). Each insertion point corresponds to a node predeces-

sor after which the pickup 𝒓+𝒊 may be inserted. Suitable insertions 𝐼− for its

delivery 𝒓−𝒊 in the current path are also retrieved, including the pickup 𝒓+𝒊 as
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Algorithm 3: Creation of the branching points for the DARP.

1 if
∧
𝑘∈𝐾 Route𝑘 .isFixed() then

2 return solution

3 𝒓 𝒊 ← argmin

𝑟 𝑗 ∈ 𝑅 | 𝑟 𝑗 not inserted

∑
𝑘∈𝐾 Route𝑘 .nInsert(𝒓+𝒋 ) · Route𝑘 .nInsert(𝒓−𝒋 )

4 branches← {}
5 for 𝑘 ∈ 𝐾 do
6 𝐼+ ← Route𝑘 .getInsert(𝒓+𝒊 )
7 for 𝑝+ ∈ 𝐼+ do
8 𝐼− ← Route𝑘 .getInsertAfter(𝒓−𝒊 , 𝑝+) ∪ {𝒓+𝒊 }
9 for 𝑝− ∈ 𝐼− do
10 branches← branches ∪{

(Route𝑘 .insert(𝑝+, 𝒓+𝒊 ) ∧ Route𝑘 .insert(𝑝−, 𝒓−𝒊 ))
}

11 sort branches by increasing order of heuristic cost

12 return branches

a predecessor candidate (line 8). All valid combinations of predecessors are

considered as an alternative branching decision to consider (line 10). Since

DFS is used in CP, the most promising insertions should be explored first on

leftmost branches. This can for instance be achieved by sorting all candidate

insertions based on their impact on tour length, prioritizing those that mini-

mize the increase in distance (line 11). A solution is reached when no further

insertions are possible in any vehicle: all paths are fixed (line 2).

Example 4.1.1. The example refers to Figure 4.2 with only one vehicle. A

route serves both visits of 𝑟1. The request 𝑟2 is selected, resulting in six pos-

sible sequences for inserting its two visits, each corresponding to a possible

branching decision in the search tree. These insertion options are sorted by

their cost, corresponding to the increase in distance.

A DFS using the branching of Algorithm 3 can be used to find an initial

solution by stopping at the first feasible solution encountered. A limited dis-

crepancy DFS search, keeping only the leftmost few branches, as was done

in [JV11] can also be used to quickly discover good solutions. The search can

also be used as part of an LNS strategy [Sha98], whose main iteration is de-

picted in Algorithm 4. A set R of requests to relax from a previous solution

𝑆 is first selected (line 1). The paths represented in the previous solution are

then enforced, except for nodesVR belonging to relaxed requests, which are

omitted (line 7). A search is finally performed (line 8) to insert those remain-

ing relaxed requests, leading to a new solution 𝑆 . This process is repeated

until a given stopping criterion is met.
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Figure 4.2: Paths generated by Algorithm 3 given an initial one (top). Num-
bers indicate which are considered first.

4.1.1 Limitations of Existing CP Approaches

The model and search strategy introduced for the DARP in the previous sec-

tion rely on insertion-based sequence variables. However, the most common

approach for modeling VRPs in CP is based on the successor model, which

does not support insertion-based search strategies. This kind of model has

two main limitations. First, representing the optional nature of visits with the

successor model is not straightforward
1
. Second, at the search level, the first

1
Even though the subcircuit version allows a node to be excluded from the circuit by as-

signing it a self-loop (succ𝑖 = 𝑖), it complicates the model semantics, as constraints need to be

aware that self-loops are permitted and designate an unvisited node
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Algorithm 4: An LNS iteration for DARP

Input: 𝑆 = [𝑆1, . . . , 𝑆𝐾 ]: a sequence of visits for each vehicle

1 R ← relaxedRequests(S)

2 VR ← ⋃
𝑟𝑖 ∈R{𝑟+𝑖 , 𝑟−𝑖 }

3 for 𝑘 ∈ 𝐾 do
4 Route𝑘 ← empty sequence variable // empty path

// iterate in order over previous path

5 for 𝑣 ∈ 𝑆𝑘 do
6 if 𝑣 ∉ VR then

// append the visit in same order as in 𝑆

7 Route𝑘 .insertAtEnd(𝑣)
8 𝑆 ← Find best solution by optimizing Route

solution constructed along the leftmost branch of the search tree typically

relies on a nearest neighbor heuristic. These nearest neighbor heuristics tend
to add small edges near the root of the search tree, but as decisions progress,

they tend to add very long edges at the end, making it difficult to quickly find

good solutions.

An advanced CP alternative to the successor model, which enables deal-

ing with optional visits more naturally, is to use the head-tail sequence vari-
ables implemented in IBM CP Optimizer [Lab+18a; Lab+09a]. These variables

handle optionality by design since not every node needs to be added in the

sequence. However, similarly to the successor model, a heuristic on those

variables would also rely on a nearest neighbor strategy for extending the

head or the tail of the sequence.

Since both the successor and the head-tail sequence models do not eas-

ily support insertion heuristics, a new type of variable, the insertion-based

sequence variable, was recently introduced in [TKS20; DSV22; Tho23] to ad-

dress these limitations. The insertion-based sequence variables have a domain

composed of the possible insertions for each node within a partial sequence,

being a cycle over a subset of nodes. These insertion-based sequences thus

consumemore space than the head-tail sequence variables. A summary of the

main properties of the modeling variables for VRPs in CP is given in Table 4.1.

In the rest of the chapter, insertion-based sequence variables are sim-

ply denoted sequence variables. This work significantly extends the previous

work on sequence variables from [TKS20; DSV22; Tho23] by:

■ Formalizing the computational model for sequence variables,
providing a robust theoretical foundation.

■ Introducing consistency levels, including the novel concept of insert
consistency.
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Type of variable

Feature Successor

Head-tail Insertion-based

sequence sequence

Nearest neighbor heuristics ✓ ✓ ✓
Insertion based heuristics ✓

Optional visits ✓ ✓

Memory complexity on VRPs

with 𝑛 nodes and 𝑘 vehicles

O(𝑛2) O(𝑘 · 𝑛) O(𝑘 · 𝑛2)

Table 4.1: CP Variables characteristics.

■ Proposing an implementation along with the underlying data struc-

tures to integrate sequence variables into existing trail-based CP

solvers.

■ Developing global constraints for modeling VRPs with sequence

variables.

■ Demonstrating the effectiveness of sequence variables on several

problems.

4.2 Sequence Domain

We first introduce some notations before defining the domain of sequence

variables.

Notations A sequence
−→
𝑆 is defined as an ordered set of nodes belonging to a

graph, without repetition. Let
−→
𝑆 be a sequencewith the form

−→
𝑆 =

−→
𝑆 1 ·𝑣1 ·𝑣3 ·

−→
𝑆 2

(
−→
𝑆 1 and

−→
𝑆 2 being sequences, possibly empty). An insertion operation defined

by the triplet of nodes (𝑣1, 𝑣2, 𝑣3) produces a new sequence
−→
𝑆 ′ =

−→
𝑆 1 ·𝑣1 ·𝑣2 ·𝑣3 ·

−→
𝑆 2. We denote 𝑣𝑖

−→
𝑆−→ 𝑣 𝑗 to indicate that 𝑣𝑖 directly precedes 𝑣 𝑗 in the sequence

−→
𝑆 and 𝑣𝑖

−→
𝑆

≺ 𝑣 𝑗 when 𝑣𝑖 precedes (not necessarily directly) 𝑣 𝑗 in
−→
𝑆 . Those

relations are simply written 𝑣𝑖 −→ 𝑣 𝑗 and 𝑣𝑖 ≺ 𝑣 𝑗 when clear from the context.

If the nodes can be the same, the relation is written 𝑣𝑖 ⪯ 𝑣 𝑗 . Given a sequence

−→
𝑆 = 𝑣1 . . . 𝑣𝑖 . . . 𝑣𝑛 , prefix(−→𝑆 , 𝑣𝑖) = 𝑣1 . . . 𝑣𝑖 and suffix(−→𝑆 , 𝑣𝑖) = 𝑣𝑖 . . . 𝑣𝑛 . Lastly,
given a node set𝑉 , a start node 𝛼 ∈ 𝑉 and an end node 𝜔 ∈ 𝑉 , P(𝑉 ) denotes
all sequences

−→
𝑆 over a subset of nodes 𝑉 , starting at node 𝛼 ∈ 𝑉 and ending

at node 𝜔 ∈ 𝑉 .
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Domain A sequence domain denoted D ⊆ P(𝑉 ) contains a set of se-

quences over a subset of the nodes 𝑉 without repetition, starting at node

𝛼 ∈ 𝑉 and ending at node 𝜔 ∈ 𝑉 . Four elementary domain updates are ex-

posed, to restrict any sequence represented in the domain:

1. Require a node to be visited, without explicitly stating the position of

the node in the sequence.

2. Exclude a node from any sequence in the domain.

3. Enforce a subsequence to be included within any sequence from the

domain. This is useful when an initial path has been identified (the sub-

sequence), and every sequence from the domain must be constructed

by extending it through insertions.

4. Forbid the occurrence of a node 𝑣2 between two other nodes 𝑣1 and

𝑣3 within the sequence, regardless of any additional nodes that may

be present between them. This operation is useful to represent that

the visit of 𝑣3 may be performed after 𝑣1 provided that 𝑣2 is omitted,

for instance if passing through 𝑣2 would exceed an allowed distance.

This corresponds to forbid subsequences 𝑣1 · 𝑣2 · 𝑣3 of length 3, with

potential nodes between them.

To define the sequence domainD, we can define one subdomain per oper-

ation, tailored to represent the remaining sequences after applying it. Those

four subdomains are as follows.

1. D r⃝(𝑅) is specified by a set of required nodes 𝑅 ⊆ 𝑉 . It denotes all

sequences including all nodes in 𝑅. More formally,

D r⃝(𝑅) =
{−→
𝑆 | ∀𝑣 ∈ 𝑅 : 𝑣 ∈ −→𝑆

}
(4.8)

2. D x⃝(𝑋 ) is specified by a set of excluded nodes 𝑋 ⊆ 𝑉 . It denotes all
sequences where no node in 𝑋 is included. More formally,

D x⃝(𝑋 ) =
{−→
𝑆 | ∀𝑣 ∈ 𝑋 : 𝑣 ∉

−→
𝑆

}
(4.9)

3. D s⃝(−→𝑠 ) is specified by a partial sequence of nodes
−→𝑠 . It denotes all

sequences
−→
𝑆 such that

−→𝑠 is a subsequence of
−→
𝑆 . More formally,

D s⃝(−→𝑠 ) =
{
−→
𝑆 | ∀𝑣1, 𝑣2 ∈ −→𝑠 : 𝑣1

−→𝑠
≺ 𝑣2 =⇒ 𝑣1

−→
𝑆

≺ 𝑣2

}
(4.10)
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4. D f⃝(𝐹 ) is specified by a set of subsequences F ⊆ 𝑉 × 𝑉 × 𝑉 of length

3, which is the minimum length to represent the occurrence of a node

between two other nodes. D f⃝(𝐹 ) denotes all sequences where no sub-
sequence in 𝐹 appears. More formally,

D f⃝(𝐹 ) =
{
−→
𝑆 | ∀(𝑣𝑖 · 𝑣 𝑗 · 𝑣𝑘 ) ∈ 𝐹 : ¬(𝑣𝑖

−→
𝑆

≺ 𝑣 𝑗 ∧ 𝑣 𝑗
−→
𝑆

≺ 𝑣𝑘 )
}

(4.11)

Those four subdomains define a sequence domain as follows.

Definition 4.2.1. A sequence domain is defined as

D = ⟨𝑅,𝑋, −→𝑠 , 𝐹 ⟩ = D r⃝(𝑅) ∩ D x⃝(𝑋 ) ∩ D s⃝(−→𝑠 ) ∩ D f⃝(𝐹 ) (4.12)

Definition 4.2.2. D is said to be fixed when |D| = 1.

Example 4.2.1. Let

■ 𝑉 = {𝛼, 𝑣1, 𝑣2, 𝑣3, 𝜔}

■ 𝑅 = {𝛼,𝜔, 𝑣2}

■ 𝑋 = {𝑣3}

■ −→𝑠 = 𝛼 · 𝑣1 · 𝜔

■ 𝐹 = {(𝛼 · 𝑣2 · 𝑣1), (𝑣3 · 𝑣1 · 𝑣2)}

The sequence domain is D = D r⃝(𝑅) ∩ D x⃝(𝑋 ) ∩ D s⃝(−→𝑠 ) ∩ D f⃝(𝐹 ) =

{(𝛼 · 𝑣1 · 𝑣2 · 𝜔)}. The compositions of the subdomains are represented in

Table 4.2. Given that |D| = 1, the domain is fixed.

Domain updates over D are defined by growing the sets 𝑅, 𝑋 and 𝐹 ,

adding more elements to them, or by inserting a node within the partial se-

quence
−→𝑠 . One can also enforce more complex constraints through several

subdomain modifications. For instance, forcing a node 𝑣2 to be visited be-

tween nodes 𝑣1, 𝑣3 can be achieved by adding (𝛼 · 𝑣2 · 𝑣1), (𝑣3 · 𝑣2 · 𝜔) to the

forbidden subsequences 𝐹 given that any sequence
−→
𝑆 ∈ D begins at 𝛼 and

ends at 𝜔 . Moreover, if the node 𝑣2 must be included in the sequences of the

domain, 𝑣2 can be added into the required nodes 𝑅.

A sequence domain is used by a sequence variable
−→
𝑆 , which represents an

unknown sequence. Such a variable is particularly convenient for modeling

a route from an origin node 𝛼 to a destination node 𝜔 in a VRP, where the

nodes visited and their ordering represents the path performed by a vehicle.

The main challenge for representing a domain is memory. The set of for-

bidden subsequences 𝐹 ⊆ 𝑉 × 𝑉 × 𝑉 requires a cubic amount of space in
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P(𝑉 ) D r⃝(𝑅) D x⃝(𝑋 ) D s⃝(−→𝑠 ) D f⃝(𝐹 )
𝛼 · 𝜔 ✓ ✓

𝛼 · 𝑣1 · 𝜔 ✓ ✓ ✓
𝛼 · 𝑣2 · 𝜔 ✓ ✓ ✓
𝛼 · 𝑣3 · 𝜔 ✓

𝜶 · 𝒗1 · 𝒗2 · 𝝎 ✓ ✓ ✓ ✓
𝛼 · 𝑣1 · 𝑣3 · 𝜔 ✓ ✓
𝛼 · 𝑣2 · 𝑣1 · 𝜔 ✓ ✓ ✓
𝛼 · 𝑣2 · 𝑣3 · 𝜔 ✓ ✓
𝛼 · 𝑣3 · 𝑣1 · 𝜔 ✓ ✓
𝛼 · 𝑣3 · 𝑣2 · 𝜔 ✓ ✓

𝛼 · 𝑣1 · 𝑣2 · 𝑣3 · 𝜔 ✓ ✓ ✓
𝛼 · 𝑣1 · 𝑣3 · 𝑣2 · 𝜔 ✓ ✓ ✓
𝛼 · 𝑣2 · 𝑣1 · 𝑣3 · 𝜔 ✓ ✓
𝛼 · 𝑣2 · 𝑣3 · 𝑣1 · 𝜔 ✓ ✓
𝛼 · 𝑣3 · 𝑣1 · 𝑣2 · 𝜔 ✓ ✓
𝛼 · 𝑣3 · 𝑣2 · 𝑣1 · 𝜔 ✓ ✓

Table 4.2: Subdomains composition in Example 4.2.1. A check mark in one
of the last 4 columns indicates that the corresponding sequence in the first
column is included within the subdomain.

the size of the set 𝑉 , and is thus impractical to encode in problems with a

large set of nodes. Moreover, computing the intersection of the subdomains

to yield the domain D might be time-consuming. We instead introduce next

a compact encoding of this domain using a directed graph, restraining the

forbidden subsequences that can be encoded in 𝐹 while consuming O(|𝑉 |2)
memory.

4.2.1 Encoding Forbidden Subsequences in a Graph

It is worth noting that a partial sequence
−→𝑠 and set of forbidden subsequences

𝐹 define a subset of a sequence domain: D ⊆ D s⃝(−→𝑠 ) ∩ D f⃝(𝐹 ). Given

that we are interested in the intersection of the subdomains, we will restrict

how the partial sequence
−→𝑠 can grow given the set 𝐹 , and how forbidden

subsequences can be added to 𝐹 given the partial sequence
−→𝑠 . For instance,

it would be useless to add a forbidden subsequence (𝑣1 · 𝑣2 · 𝑣3) to 𝐹 if
−→𝑠 =

𝛼 · 𝑣3 · 𝑣2 · 𝑣1 · 𝜔 , as D s⃝(−→𝑠 ) already prevents such subsequence.
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4.2.1.1 Forbidden Subsequences Restriction

To allow a compact encoding of the forbidden subsequences 𝐹 , we restrict

them as follows:

𝐹 ⊆ {(𝑣1 · 𝑣2 · 𝑣3) | 𝑣1

−→
𝑠

≺ 𝑣3} (4.13)

Where
−→𝑠 is the partial sequence from the domain ⟨𝑅,𝑋, −→𝑠 , 𝐹 ⟩. In other

words, condition (4.13) restricts 𝐹 so that it only contains subsequences of

length 3, where the extremities of each subsequence belong to the partial se-

quence
−→𝑠 and are consecutive. To emphasize this restriction, 𝐹 is written 𝐹 in

the following, to clearly show that condition (4.13) holds. Forbidden subse-

quences from 𝐹 that do not match condition (4.13) need to be delayed before

being added to 𝐹 until their endpoints are consecutive in the partial sequence.

In case 𝑣1 ≺ 𝑣2 ≺ 𝑣3 ∈ 𝐹 , the partial sequence −→𝑠 contains a forbidden subse-

quence. This corresponds to a domain wipe-out (D = ∅) and will be discussed
in section 4.2.1.6.

Given 𝐹 and
−→𝑠 , the set of subsequences implicitly forbidden is:

F 𝐼 (𝐹, −→𝑠 ) = {(𝑣𝑖 · 𝑣2 · 𝑣 𝑗 ) | (𝑣1 · 𝑣2 · 𝑣3) ∈ 𝐹 ∧ 𝑣1 ⪯ 𝑣𝑖
−→
𝑠−→ 𝑣 𝑗 ⪯ 𝑣3} (4.14)

In (4.14), F 𝐼 (𝐹, −→𝑠 ) defines all forbidden subsequences, based on 𝐹 , where

the extremities of each subsequence are directly preceding each other in the

partial sequence
−→𝑠 . Given that extremities must only be preceding each other,

not necessarily directly, in subsequences from 𝐹 (𝑣𝑖 ≺ 𝑣 𝑗 ), we do not neces-

sarily have 𝐹 ⊆ F 𝐼 (𝐹, −→𝑠 ).

Example 4.2.2. Let −→𝑠 = 𝛼 · 𝑣1 · 𝑣2 · 𝜔 and 𝐹 = {(𝑣1 · 𝑣3 · 𝑣2), (𝛼 · 𝑣4 · 𝑣2)}.
We get F 𝐼 (𝐹, −→𝑠 ) = {(𝑣1 · 𝑣3 · 𝑣2), (𝛼 · 𝑣4 · 𝑣1), (𝑣1 · 𝑣4 · 𝑣2)}: compared to 𝐹 ,

the subsequence (𝛼 · 𝑣4 · 𝑣2) has been decomposed into two subsequences:

(𝛼 · 𝑣4 · 𝑣1) and (𝑣1 · 𝑣4 · 𝑣2)

By allowing the restriction (4.13) and exploiting the fact that the partial se-

quence
−→𝑠 can only grow, the set F 𝐼 (𝐹, −→𝑠 ) can be represented using a directed

graph𝐺 (𝑉 , 𝐸). In this graph representation, detour edges limit the allowed in-

sertions in
−→𝑠 .

Definition 4.2.3. A pair of detour edges is a pair of edges (𝑣1, 𝑣2), (𝑣2, 𝑣3) that
can be used to insert a node 𝑣2 outside of the partial sequence

−→𝑠 between two

nodes 𝑣1 and 𝑣3 with 𝑣1 directly preceding 𝑣3 in the partial sequence
−→𝑠 :

(𝑣2 ∈ 𝑉 \ −→𝑠 ) ∧ 𝑣1

−→𝑠−→ 𝑣3 ∧ (𝑣1, 𝑣2) ∈ 𝐸 ∧ (𝑣2, 𝑣3) ∈ 𝐸 (4.15)

We equivalently say that a pair of detour edges (𝑣1, 𝑣2), (𝑣2, 𝑣3) defines an

insertion triplet (𝑣1, 𝑣2, 𝑣3).
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Definition 4.2.4. A node 𝑣2 ∈ 𝑉 is insertable if a pair of detour edges passes
through it:

(𝑣2 ∈ 𝑉 \ −→𝑠 ) ∧
(
∃𝑣1

−→
𝑠−→ 𝑣3 : (𝑣1, 𝑣2) ∈ 𝐸 ∧ (𝑣2, 𝑣3) ∈ 𝐸

)
(4.16)

The forbidden subsequences from F 𝐼 (𝐹, −→𝑠 ) use those detour edges to re-
strict the insertions that may be performed over

−→𝑠 :

∀(𝑣2 ∈ 𝑉 \ −→𝑠 ) : (𝑣1 · 𝑣2 · 𝑣3) ∈ F 𝐼 (𝐹, −→𝑠 ) =⇒ (𝑣1, 𝑣2) ∉ 𝐸 ∧ (𝑣2, 𝑣3) ∉ 𝐸 (4.17)

Where a pair of detour edges (𝑣1, 𝑣2), (𝑣2, 𝑣3) is deleted whenever the sub-
sequence (𝑣1·𝑣2·𝑣3) is forbidden byF 𝐼 (𝐹, −→𝑠 ). In otherwords, with rules (4.15),
(4.17), the partial sequence

−→𝑠 may only grow through an insertion (𝑣1, 𝑣2, 𝑣3)
if the related subsequence is not forbidden: (𝑣1 · 𝑣2 · 𝑣3) ∉ F 𝐼 (𝐹, −→𝑠 ).

Condition (4.17) does not restrict all nodes and edges in the graph𝐺 (𝑉 , 𝐸),
given that it holds for nodes 𝑣2 ∈ 𝑉 \ −→𝑠 . We next define the insert consistency
property that the graph𝐺 (𝑉 , 𝐸) and the partial sequence −→𝑠 must maintain to

fully encode 𝐹 .

4.2.1.2 Insert Consistency

Definition 4.2.5. A pair ⟨−→𝑠 ,𝐺 (𝑉 , 𝐸)⟩ comprising
−→𝑠 and graph 𝐺 (𝑉 , 𝐸) is

insert consistent iff

1. The partial sequence
−→𝑠 is a simple path of a subset of nodes in𝑉 , start-

ing at 𝛼 ∈ 𝑉 and ending at 𝜔 ∈ 𝑉 .

2. The partial sequence
−→𝑠 uses edges from 𝐸. Formally:

∀𝑣1, 𝑣2 ∈ −→𝑠 : (𝑣1 −→ 𝑣2) ⇐⇒ (𝑣1, 𝑣2) ∈ 𝐸 (4.18)

3. Nodes outside of the partial sequence are fully connected. Formally:

∀𝑣1, 𝑣2 ∈ 𝑉 \ −→𝑠 : 𝑣1 ≠ 𝑣2 ⇐⇒ (𝑣1, 𝑣2) ∈ 𝐸 (4.19)

4. For every two consecutive nodes in the partial sequence, and every

node outside of it, the pair of detour edges through this node is either

fully present or fully absent. Formally:

∀𝑣1 −→ 𝑣3,∀𝑣2 ∈ 𝑉 \ −→𝑠 : (𝑣1, 𝑣2) ∈ 𝐸 ⇐⇒ (𝑣2, 𝑣3) ∈ 𝐸 (4.20)

Condition (4.19) is useful to ensure that the set of edges 𝐸 in the graphmay

only decrease over time, a property used to represent the edges efficiently

in the implementation later on. Forbidden precedences encoded in 𝐹 only

remove detour edges, leaving edges between insertable nodes untouched.

Example 4.2.3. Figure 4.3 shows an insert consistent pair ⟨−→𝑠 ,𝐺 (𝑉 , 𝐸)⟩.
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𝛼 𝜔

𝑣1
𝑣2

𝑣3

⟨−→𝑠 ,𝐺⟩

𝑉 = {𝛼, 𝑣1, 𝑣2, 𝑣3, 𝜔}

−→𝑠 = 𝛼 · 𝑣2 · 𝜔

𝐸 =


(𝛼, 𝑣2)(𝛼, 𝑣2)(𝛼, 𝑣2), (𝑣2, 𝜔)(𝑣2, 𝜔)(𝑣2, 𝜔),
(𝛼, 𝑣1), (𝑣1, 𝑣2),
(𝛼, 𝑣3), (𝑣3, 𝑣2),
(𝑣2, 𝑣3), (𝑣3, 𝜔),
(𝑣1, 𝑣3), (𝑣3, 𝑣1)



𝐹 = {(𝑣2 · 𝑣1 · 𝜔)}

F 𝐼 (𝐹, −→𝑠 ) = {(𝑣2 · 𝑣1 · 𝜔)}

Detour edges

Figure 4.3: An insert consistent pair ⟨−→𝑠 ,𝐺 (𝑉 , 𝐸)⟩. Edges from the graphs are
represented using dashed arrows, while the edges belonging to the sequence
are continuous and shown in bold. The subsequence (𝑣2 · 𝑣1 ·𝜔) is forbidden,
which is why the pair of detour edges (𝑣2, 𝑣1), (𝑣1, 𝜔) is absent.

4.2.1.3 Insertion

We next define how modifications of the partial sequence
−→𝑠 from an insert

consistent pair ⟨−→𝑠 ,𝐺 (𝑉 , 𝐸)⟩ may be performed, and their effect on the graph.

Definition 4.2.6. Let ⟨−→𝑠 ,𝐺 (𝑉 , 𝐸)⟩ be an insert consistent pair. The insert op-

eration denoted ↦−→ takes as input one insertion triplet (𝑣1, 𝑣2, 𝑣3) (i.e. (𝑣1, 𝑣2),
(𝑣2, 𝑣3) is a pair of detour edges) and yields ⟨−→𝑠 ′,𝐺 (𝑉 , 𝐸′)⟩. This operation is

formally defined as:

⟨−→𝑠 ,𝐺 (𝑉 , 𝐸)⟩ ↦−→
(𝑣1,𝑣2,𝑣3 )

⟨−→𝑠 ′,𝐺 (𝑉 , 𝐸′)⟩ (4.21)

where

■ −→𝑠 ′ = prefix(−→𝑠 , 𝑣1) · 𝑣2 · suffix(−→𝑠 , 𝑣3), and

■ 𝐸′ = 𝐸 \ ({(𝑣1, 𝑣3)} ∪ 𝐸𝐴 ∪ 𝐸𝐵) with

𝐸𝐴 ={(𝑣, 𝑣2) | 𝑣 ∈ −→𝑠 ∧ 𝑣 ≠ 𝑣1} ∪ {(𝑣2, 𝑣) | 𝑣 ∈ −→𝑠 ∧ 𝑣 ≠ 𝑣3} (4.22)

𝐸𝐵 ={(𝑣2, 𝑣) | 𝑣 ∈ 𝑉 \ −→𝑠 ∧ (𝑣1, 𝑣) ∉ 𝐸} ∪ (4.23)

{(𝑣, 𝑣2) | 𝑣 ∈ 𝑉 \ −→𝑠 ∧ (𝑣, 𝑣3) ∉ 𝐸}

Lemma 4.2.1. The insert operation preserves the insert consistency.

Proof. 𝐸𝐴 is the minimum set of edges to be removed to maintain condi-

tion (4.18) satisfied. Those are the edges linking the inserted node 𝑣2 to other

nodes than 𝑣1 and 𝑣3 in the partial sequence
−→𝑠 . 𝐸𝐵 is the minimum set of

edges to be removed to maintain the condition (4.20) satisfied. Indeed, prior
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to the insertion, 𝑣2 was fully connected to all other insertable nodes 𝑉 \ −→𝑠 .
However, edges from 𝐸𝐵 must be removed to ensure that (i) detour edges al-

ways appear in pairs in (−→𝑠 ′,𝐺 (𝑉 , 𝐸′)) and (ii) any node 𝑣 ∈ 𝑉 \ −→𝑠 that could

not be inserted between 𝑣1 and 𝑣3 before, cannot now be inserted between 𝑣1

and 𝑣2 or 𝑣2 and 𝑣3. □

𝛼 𝑣1

𝑣2 𝑣3 𝑣4

𝜔

−→𝑠1 = 𝛼 · 𝑣1 · 𝜔
𝐹 =

{
(𝑣1 · 𝑣2 · 𝜔)

}
F 𝐼 (𝐹, −→𝑠1 ) ={
(𝑣1 · 𝑣2 · 𝜔)

}

𝐺1

𝛼 𝑣1

𝑣2 𝑣3 𝑣4

𝜔

−→𝑠2 = 𝛼 · 𝑣1 · 𝑣3 · 𝜔

𝐹 =
{
(𝑣1 · 𝑣2 · 𝜔)

}
F 𝐼 (𝐹, −→𝑠2 ) ={
(𝑣1 · 𝑣2 · 𝑣3)
(𝑣3 · 𝑣2 · 𝜔)

}

𝐺2

↦−→
(𝑣1,𝑣3,𝜔 )
↦−→
(𝑣1,𝑣3,𝜔 )
↦−→
(𝑣1,𝑣3,𝜔 )

𝛼 𝑣1

𝑣2 𝑣3 𝑣4

𝜔

−→𝑠3 = 𝛼 · 𝑣1 · 𝑣3 · 𝑣4 · 𝜔

𝐹 =
{
(𝑣1 · 𝑣2 · 𝜔)

}
F 𝐼 (𝐹, −→𝑠3 ) =
(𝑣1 · 𝑣2 · 𝑣3)
(𝑣3 · 𝑣2 · 𝑣4)
(𝑣4 · 𝑣2 · 𝜔)



𝐺3

↦−→
(𝑣3,𝑣4,𝜔 )
↦−→
(𝑣3,𝑣4,𝜔 )
↦−→
(𝑣3,𝑣4,𝜔 )

Figure 4.4: Evolution of the partial sequence −→𝑠 , the graph𝐺 (𝑉 , 𝐸) and the set
F 𝐼 (𝐹, −→𝑠 ) over multiple insertions.

Example 4.2.4. Figure 4.4 shows the evolution of the graph and the partial

sequence over multiple insertions. Inserting (𝑣1, 𝑣3, 𝜔) in the first state (left)

deletes the edge (𝑣1, 𝜔), edges (𝛼, 𝑣3), (𝑣3, 𝑣1) using rule (4.22) and the edges

(𝑣2, 𝑣3), (𝑣3, 𝑣2) using rule (4.23).

This operation ⟨−→𝑠 ,𝐺 (𝑉 , 𝐸)⟩ ↦−→
(𝑣1,𝑣2,𝑣3 )

⟨−→𝑠 ′,𝐺 (𝑉 , 𝐸′)⟩ has a fundamental side

effect on the forbidden subsequences 𝐹 . When performing it, the implicit set

of forbidden subsequencesF 𝐼 (𝐹, −→𝑠 ′)may be defined bymeans of the previous

implicit set F 𝐼 (𝐹, −→𝑠 ) only, as follows:

F 𝐼 (𝐹, −→𝑠 ′) =
⋃

(𝑣𝑖 ·𝑣𝑗 ·𝑣𝑘 ) ∈F𝐼 (𝐹,−→𝑠 )

𝜑 (𝑣𝑖 · 𝑣 𝑗 · 𝑣𝑘 ) (4.24)

𝜑 (𝑣𝑖 · 𝑣 𝑗 · 𝑣𝑘 ) =

{(𝑣𝑖 · 𝑣 𝑗 · 𝑣𝑘 )} if 𝑣𝑖

−→𝑠 ′−−→ 𝑣𝑘{
(𝑣𝑖 · 𝑣 𝑗 · 𝑣2), (𝑣2 · 𝑣 𝑗 · 𝑣𝑘 )

}
otherwise

(4.25)
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The function𝜑 defines the evolution of a forbidden subsequence (𝑣𝑖 ·𝑣 𝑗 ·𝑣𝑘 )
after the derivation ↦−→

(𝑣1,𝑣2,𝑣3 )
(4.25). Either the endpoints of the forbidden subse-

quence are still directly consecutive in the new partial sequence
−→𝑠 ′ (𝑣𝑖

−→𝑠 ′−−→ 𝑣𝑘 ),

and the subsequence is kept. Otherwise, the endpoints are not directly con-

secutive anymore, which happenswhenever the inserted node has been added

between them: 𝑣𝑖
−→
𝑠 ′−−→ 𝑣2

−→
𝑠 ′−−→ 𝑣𝑘 (or equivalently 𝑣1 = 𝑣𝑖 ∧ 𝑣3 = 𝑣𝑘 ). In this

case, the subsequence (𝑣𝑖 · 𝑣 𝑗 · 𝑣𝑘 ) is decomposed into two subsequences:

(𝑣𝑖 · 𝑣 𝑗 · 𝑣2), (𝑣2 · 𝑣 𝑗 · 𝑣𝑘 ) where the endpoints are now directly consecutive.

Applying this rule on every initial forbidden subsequence defines the newly

forbidden subsequences (4.24).

Example 4.2.5. Continuing Example 4.2.4, using Figure 4.4. When perform-

ing insertion ⟨−→𝑠2 ,𝐺 (𝑉 , 𝐸)⟩ ↦−→
(𝑣3,𝑣4,𝜔 )

⟨−→𝑠3 ,𝐺 (𝑉 , 𝐸′)⟩ (middle to right), the for-

bidden subsequence (𝑣1 · 𝑣2 · 𝑣3) remains in F 𝐼 (𝐹, −→𝑠3 ), while (𝑣3 · 𝑣2 · 𝜔) is
decomposed into (𝑣3 · 𝑣2 · 𝑣4), (𝑣4 · 𝑣2 · 𝜔).

Equation (4.24) is fundamental for efficiently maintaining the forbidden

subsequences from F 𝐼 (𝐹, −→𝑠 ) in the graph. It means that a forbidden subse-

quence (𝑣1 ·𝑣2 ·𝑣3) is implicitly maintained over insertions: it suffices to follow

the rule (4.24). This is translated, through rule (4.23), by an explicit deletion
of detour edges in the graph.

4.2.1.4 NotBetween

It remains to define how adding new subsequences to 𝐹 impact the insert

consistent pair. This is achieved by a notBetween operation, defined next.

Definition 4.2.7. Let ⟨−→𝑠 ,𝐺 (𝑉 , 𝐸)⟩ be an insert consistent pair. The

notBetween operation denoted ̸↦−→ takes as input one triplet of nodes

(𝑣1, 𝑣2, 𝑣3) where 𝑣1 ≺ 𝑣3 and yields ⟨−→𝑠 ,𝐺 (𝑉 , 𝐸′)⟩, where the subsequence

(𝑣1 · 𝑣2 · 𝑣3) has been forbidden. This operation is formally defined as

⟨−→𝑠 ,𝐺 (𝑉 , 𝐸)⟩ ̸↦−→
(𝑣1,𝑣2,𝑣3 )

⟨−→𝑠 ,𝐺 (𝑉 , 𝐸′)⟩ (4.26)

where

𝐸′ = 𝐸 \ {(𝑣𝑖 , 𝑣2), (𝑣2, 𝑣 𝑗 ) | 𝑣𝑖 , 𝑣 𝑗 ∈ −→𝑠 ∧ 𝑣1 ⪯ 𝑣𝑖 −→ 𝑣 𝑗 ⪯ 𝑣3} (4.27)

The edges removed in (4.27) use the same enumeration rule as F 𝐼 (𝐹, −→𝑠 )
in (4.14).

Lemma 4.2.2. The notBetween operation preserves the insert consistency.
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Proof. The set of edges removed come by pairs, so that each pair deletion

preserves (4.20). Those removals prevent future insertions of 𝑣2 between 𝑣1

and 𝑣3 in
−→𝑠 . No edge between two nodes outside of the partial sequence is

deleted, maintaining (4.19). Unless 𝑣1 ≺ 𝑣2 ≺ 𝑣3, a special case corresponding

to a domain wipe-out and discussed in section 4.2.1.6, the partial sequence

remains a simple path using edges from E (4.18). □

𝛼 𝑣1 𝑣2 𝜔

𝑣3

−→𝑠 1 = 𝛼 · 𝑣1 · 𝑣2 · 𝜔
𝐹1 = ∅

F 𝐼 (𝐹1,
−→𝑠 1) = ∅

𝐺1

𝛼 𝑣1 𝑣2 𝜔

𝑣3

−→𝑠 2 = 𝛼 · 𝑣1 · 𝑣2 · 𝜔
𝐹2 =

{
(𝑣1 · 𝑣3 · 𝜔)

}
F 𝐼 (𝐹2,

−→𝑠 2) =
{
(𝑣1 · 𝑣3 · 𝑣2)
(𝑣2 · 𝑣3 · 𝜔)

}

𝐺2

̸↦−→
(𝑣1,𝑣3,𝜔 )
̸↦−→

(𝑣1,𝑣3,𝜔 )
̸↦−→

(𝑣1,𝑣3,𝜔 )

Figure 4.5: Evolution of the partial sequence −→𝑠 1, the graph 𝐺1 and the set
F 𝐼 (𝐹1,

−→𝑠 1) after a notBetween.

Example 4.2.6. Figure 4.5 shows the evolution of the graph and the partial

sequence after a notBetween operation.

4.2.1.5 Domain Mapping

An insert consistent pair ⟨−→𝑠 ,𝐺 (𝑉 , 𝐸)⟩ implicitly contains all sequences from

the domain D s⃝(−→𝑠 ) ∩ D f⃝(𝐹 ). Those sequences can be enumerated with

the help of insert and notBetween operations. To define this mapping, the

derivation definition is needed.

Definition 4.2.8. The zero or more derivation symbol

∗↦−→ from ⟨−→𝑠 ,𝐺⟩ de-
scribes the application of multiple consecutive insert or notBetween opera-

tions, or to a transition to ⟨−→𝑠 ,𝐺⟩ itself.

Example 4.2.7. In Figure 4.4, ⟨−→𝑠 3,𝐺3⟩ can be reached from ⟨−→𝑠 1,𝐺1⟩ through
several consecutive insertions, hence ⟨−→𝑠 1,𝐺1⟩

∗↦−→ ⟨−→𝑠 3,𝐺3⟩.

The mapping from an insert consistent pair ⟨−→𝑠 ,𝐺 (𝑉 , 𝐸)⟩ to the domain

D s⃝(−→𝑠 ) ∩ D f⃝(𝐹 ) it represents can now be given.

Definition 4.2.9. Given a domain D s⃝(−→𝑠 ) ∩ D f⃝(𝐹 ) represented by an in-

sert consistent pair ⟨−→𝑠 ,𝐺⟩. The function S(⟨−→𝑠 ,𝐺⟩) enumerates all sequences
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that can be derived from the partial tour
−→𝑠 through insert and notBetween

operations. Formally S(⟨−→𝑠 ,𝐺⟩) =
{
−→𝑠 ′

��� ⟨−→𝑠 ,𝐺⟩ ∗↦−→ ⟨−→𝑠 ′,𝐺 ′⟩
}
. An insert con-

sistent pair for D s⃝(−→𝑠 ) ∩ D f⃝(𝐹 ) implicitly encodes this set of sequences:

D s⃝(−→𝑠 ) ∩ D f⃝(𝐹 ) ≡ S(⟨−→𝑠 ,𝐺⟩).

Example 4.2.8. Referring to ⟨−→𝑠 3,𝐺3⟩ from Figure 4.4, S(⟨−→𝑠 3,𝐺3⟩) = {𝛼 · 𝑣1 ·
𝑣3 · 𝑣4 · 𝜔, 𝛼 · 𝑣2 · 𝑣1 · 𝑣3 · 𝑣4 · 𝜔}.

Similarly, in Figure 4.5, S(⟨−→𝑠 2,𝐺2⟩) = {𝛼 · 𝑣1 · 𝑣2 · 𝜔, 𝛼 · 𝑣3 · 𝑣1 · 𝑣2 · 𝜔}.

Definition 4.2.10. A domain D s⃝(−→𝑠 ) ∩ D f⃝(𝐹 ) represented by ⟨−→𝑠 ,𝐺⟩ is
fixed when edges 𝐸 from𝐺 solely contains the edges appearing in the partial

sequence
−→𝑠 . Formally:

isFixed(⟨−→𝑠 ,𝐺⟩) ⇔ 𝐸 =

{
(𝑢, 𝑣)

���� 𝑢 −→
𝑠−→ 𝑣

}
⇔ |S(⟨−→𝑠 ,𝐺⟩) | = 1 (4.28)

Example 4.2.9. In Figure 4.5, isFixed(⟨−→𝑠 2,𝐺2⟩) = false. In a pair ⟨−→𝑠 3,𝐺3⟩ ob-
tained from ⟨−→𝑠 2,𝐺2⟩ by applying either ̸↦−→

(𝛼,𝑣3,𝑣1 )
or ↦−→
(𝛼,𝑣3,𝑣1 )

, isFixed(⟨−→𝑠 3,𝐺3⟩) =
true.

4.2.1.6 Domain Wipe-Out

An attentive reader may have seen that a forbidden sequence (𝑣1 · 𝑣2 · 𝑣3) ∈ 𝐹
is not included in F 𝐼 (𝐹, −→𝑠 ) if its nodes are all consecutive in the partial se-

quence: 𝑣1

−→
𝑠

≺ 𝑣2

−→
𝑠

≺ 𝑣3 (4.14). This case is special as it corresponds to a do-

main wipe-out: the subsequence (𝑣1 · 𝑣2 · 𝑣3) directly appears in
−→𝑠 , meaning

D s⃝(−→𝑠 ) ∩ D f⃝(𝐹 ) = ∅. We consider that a domain wipe-out can be repre-

sented by a flag, meaning that the domain is an empty set. No derivation (i.e.
insertion and notBetween) can occur on a domain being empty. A domain

wipe-out corresponds to a failure and triggers a backtrack.

We have so far shown how ⟨−→𝑠 ,𝐺 (𝑉 , 𝐸)⟩ can representD s⃝(−→𝑠 ) ∩D f⃝(𝐹 ).
To encode a complete sequence domain, we must also be able to represent its

intersection with D r⃝(𝑅) and D x⃝(𝑋 ), which is discussed next.

4.2.2 Excluded Nodes

It is worth pointing out that when a node does not belong to the partial se-

quence
−→𝑠 but has no pair of detour edges passing through it, it cannot be

included in any sequence in the domain.

∀𝑣2 ∈ 𝑉 \ −→𝑠 :

(
�𝑣1 −→ 𝑣3 s.t. (𝑣1, 𝑣2), (𝑣2, 𝑣3) ∈ 𝐸

)
=⇒(

�−→𝑠 ′ ∈ D s⃝(−→𝑠 ) ∩ D f⃝(𝐹 ) s.t. 𝑣2 ∈ −→𝑠 ′
)

(4.29)
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This property can be used to represent a set of excluded nodes 𝑋 in the

graph representation, that may not be part of a sequence. In particular, it is

used to compute the intersection D ⊆ D s⃝(−→𝑠 ) ∩ D f⃝(𝐹 ) ∩ D x⃝(𝑋 ):

𝑣2 ∈ 𝑋 =⇒ �𝑣1

−→𝑠−→ 𝑣3 s.t. (𝑣1, 𝑣2), (𝑣2, 𝑣3) ∈ 𝐸 (4.30)

Equation (4.30) prevents from generating any sequence where an ex-

cluded node 𝑣 ∈ 𝑋 is visited, by removing all detour edges passing through it

(4.29).

Furthermore, to avoid maintaining edges that may never be used for in-

sertions (i.e. that may never become detour edges), invariant (4.19) is modified

as follows.

∀𝑣1, 𝑣2 ∈ 𝑉 \ −→𝑠 \ 𝑋 : 𝑣1 ≠ 𝑣2 ⇐⇒ (𝑣1, 𝑣2) ∈ 𝐸 (4.31)

∀𝑣𝑥 ∈ 𝑋,∀𝑣𝑖 ∈ 𝑉 : (𝑣𝑖 , 𝑣𝑥 ) ∉ 𝐸 ∧ (𝑣𝑥 , 𝑣𝑖) ∉ 𝐸 (4.32)

Condition (4.31) replaces (4.19): instead of forcing nodes outside the par-

tial sequence to be fully connected, only the insertable nodes are fully con-

nected. Nodes being excluded have no edge passing through them (4.32).

4.2.3 Mandatory Nodes

To obtain the complete sequence domain, we must finally compute the inter-

section D s⃝(−→𝑠 ) ∩ D f⃝(𝐹 ) ∩ D x⃝(𝑋 ) ∩ D r⃝(𝑅) = D, where a set of required

nodes 𝑅 is specified.

As expressed by (4.29), a node 𝑣2 ∈ 𝑉 \ −→𝑠 that does not belong to the

partial sequence cannot be included in any sequence in the domain if it has

no detour edge passing through it. Therefore, a domain wipe-out would occur

if a node 𝑣 ∈ 𝑅 \ −→𝑠 required but not member of the partial sequence
−→𝑠 has

no detour edge passing through it. To prevent this situation, such required

nodes are inserted when only one pair of detour edge remains for them. More

specifically, we introduce a counter 𝑛𝐼 𝑗 for every node 𝑣 𝑗 ∈ 𝑉 , tracking how

many pairs of detour edges passing through 𝑣 𝑗 exist.

𝑛𝐼 𝑗 =

{��{(𝑣𝑖 , 𝑣 𝑗 ) | (𝑣𝑖 , 𝑣 𝑗 ) ∈ 𝐸 ∧ 𝑣𝑖 ∈ −→𝑠 }�� if 𝑣 𝑗 ∉
−→𝑠

0 otherwise

(4.33)

Those counters are incrementally updated whenever 𝐹 and
−→𝑠 change:

1. Every time a pair of detour edge (𝑣𝑖 , 𝑣 𝑗 ), (𝑣 𝑗 , 𝑣𝑘 ) is deleted from the set

of edges 𝐸, the counter for the node 𝑣 𝑗 is decremented: 𝑛𝐼 𝑗 ← 𝑛𝐼 𝑗 − 1.
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2. Every time an insertion (𝑣𝑖 , 𝑣 𝑗 , 𝑣𝑘 ) is performed, all nodes 𝑣𝑙 ∈ 𝑉 \ −→𝑠
are scanned. If a node 𝑣𝑙 could previously be inserted between 𝑣𝑖 , 𝑣𝑘
(because (𝑣𝑖 , 𝑣𝑙 ), (𝑣𝑙 , 𝑣𝑘 ) ∈ 𝐸), it may now be inserted between both

𝑣𝑖 , 𝑣 𝑗 and 𝑣 𝑗 , 𝑣𝑘 , which increases its counter: 𝑛𝐼𝑙 ← 𝑛𝐼𝑙 + 1.

Furthermore, as
−→𝑠 is a simple path, the node 𝑣 𝑗 being inserted cannot

be inserted anymore, and its counter 𝑛𝐼 𝑗 is thus set to zero.

If a counter 𝑛𝐼 𝑗 takes value 1 and the node is required (𝑣 𝑗 ∈ 𝑅), then it is

inserted using its only remaining insertion. This means that the partial se-

quence
−→𝑠 may grow automatically, depending on the nodes that are required.

Given that we are interested in computing the sequence domainD, being the

intersection of the four subdomains, such automated insertions are worth-

while to perform. To prevent situations where more than one node is both

required and has only one insertion, automated insertions are performed as

soon as this condition holds, by adding nodes into 𝑅 one at a time, and insert-

ing nodes into
−→𝑠 one at a time.

4.2.4 Compact Domain Implementation

The last sections showed how to represent forbidden subsequences by a graph

𝐺 (𝑉 , 𝐸) and a partial sequence −→𝑠 , and how to copewith a set of required nodes

𝑅 and excluded nodes 𝑋 . This section now proposes an implementation of

those elements, called compact domain implementation.
The compact implementation of a sequence domain D = ⟨𝑅,𝑋, −→𝑠 , 𝐹 ⟩ =

D r⃝(𝑅) ∩ D x⃝(𝑋 ) ∩ D s⃝(−→𝑠 ) ∩ D f⃝(𝐹 ) is written ˆD. The following assumes

that all sequence domains use the compact domain implementation, and we

thus assume
ˆD = ⟨𝑅,𝑋, −→𝑠 , 𝐹 ⟩.

To be integrated in a standard trailed-based CP solver, a compact domain

implementation
ˆD need to be reversible, for instance through trailing. It re-

lies on the following reversible data structures, most of which were already

present in [TKS20; Tho23; DSV22]:

■ The partial sequence
−→𝑠 is encoded using a successor array of reversible

integers s+. It stores a pointer to the current successor of each node

belonging to the partial sequence
−→𝑠 , and an element without successor

(i.e. a node 𝑣 ∈ 𝑉 \ −→𝑠 ) points towards itself (self-loop). Similarly, an ad-

ditional array of reversible integers s− tracks the current predecessors
of each node.

■ The set of edges 𝐸 is maintained by two adjacency sets per node 𝑣 ∈ 𝑉 :
𝐸−𝑣 (incoming) and 𝐸+𝑣 (outgoing) edges: 𝐸

−
𝑣 = {(𝑣𝑖 , 𝑣) | 𝑣𝑖 ∈ 𝑉 , (𝑣𝑖 , 𝑣) ∈

𝐸}, 𝐸+𝑣 = {(𝑣, 𝑣𝑖) | 𝑣𝑖 ∈ 𝑉 , (𝑣, 𝑣𝑖) ∈ 𝐸}. Those sets are implemented using

the reversible sparse-sets introduced in [Sai+13], allowing deletion and

state restoration in constant time in a trail-based solver.
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■ A set 𝐼 , tracking the insertable nodes, is also maintained using a re-

versible sparse-set.

■ The size of the partial sequence
−→𝑠 is tracked in a reversible integer 𝑛𝑆 .

■ The counters 𝑛𝐼 𝑗 of detour edges (4.33) are maintained with reversible

integers, tracking how many insertions exist for every node 𝑣 𝑗 ∈ 𝑉 .

■ Given that 𝑅 and 𝑋 are necessarily disjoint and subsets of 𝑉 , we use a

reversible sparse-set with two size markers [Sai+13], ensuring removal

of nodes and state restoration in constant time, and enabling iteration

over 𝑅,𝑋 in O(|𝑅 |),O(|𝑋 |), respectively.
The nodes not required nor excluded are denoted 𝑃 = 𝑉 \ 𝑋 \ 𝑅, and
described as possible nodes.

The data structures used for implementing a compact domain
ˆD are de-

picted in Figure 4.6.

4.2.4.1 Initialization

When initialized, a sequence variable is defined over the set of nodes 𝑉 be-

longing to the graph 𝐺 (𝑉 , 𝐸), and its successor array s+ contains one entry
per node 𝑣 ∈ 𝑉 . The two starting and ending nodes, 𝛼 and 𝜔 , are identified

upon the initialization of the variable. These nodes constitute the initial se-

quence of nodes represented by the variable, forming a cycle in the successor

array.

s+𝛼 = 𝜔 ∧ s−𝜔 = 𝛼 ∧ s+𝜔 = 𝛼 ∧ s−𝛼 = 𝜔 (4.34)

Note that a link from the end node 𝜔 to the first node 𝛼 is encoded, thus

representing a cycle instead of a path, to ease invariant encoding in further

equations. The other nodes point to themselves as self-loops. At the initializa-

tion, the edge set forms a complete graph, except edges originating at 𝜔 and

ending at 𝛼 : 𝐸 = {(𝑣1, 𝑣2) | 𝑣1, 𝑣2 ∈ 𝑉 : 𝑣1 ≠ 𝜔 ∧ 𝑣2 ≠ 𝛼 ∧ 𝑣1 ≠ 𝑣2} ∪ {(𝜔, 𝛼)}.
The set of nodes that may be inserted is defined as 𝐼 = 𝑉 \ {𝛼,𝜔}, and each

of those nodes has one insertion at first: 𝑛𝐼𝑖 = 1∀𝑣𝑖 ∈ 𝐼 .

4.2.4.2 Invariants

First, let us introduce one predicate that will be instrumental in defining the

consistency invariants maintained on the domain. It determines (in constant

time) if a node 𝑣𝑖 belongs to the partial sequence (i.e. if 𝑣𝑖 ∈ −→𝑠 holds) by

verifying if it is not a self-loop:

isMember(𝑣𝑖) ≡ s+𝑖 ≠ 𝑣𝑖 . (4.35)
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𝛼 𝑣1 𝜔

𝑣2 𝑣3 𝑣4

𝐸− 𝐸+ 𝑛𝐼

𝛼 {𝜔} {𝑣1, 𝑣3} 0

𝑣1 {𝛼, 𝑣3} {𝑣3, 𝑣4, 𝜔} 0

𝑣2 ∅ ∅ 0

𝑣3 {𝛼, 𝑣1, 𝑣4} {𝑣1, 𝑣4, 𝜔} 2

𝑣4 {𝑣1, 𝑣3} {𝑣3, 𝜔} 1

𝜔 {𝑣1, 𝑣3, 𝑣4} {𝛼} 0

𝑣4𝑣3𝑣2𝜔 𝑣1 𝛼

𝑣1 𝑣2 𝑣3 𝑣4 𝛼 𝜔

s+

𝑣4𝑣3𝑣2𝛼 𝜔 𝑣1

𝑣1 𝑣2 𝑣3 𝑣4 𝛼 𝜔

s−

𝑛𝑆 = 3, 𝐼 = {𝑣3, 𝑣4}
𝑅 = {𝛼,𝜔, 𝑣1}, 𝑋 = {𝑣2}

𝛼 𝑣1 𝜔

𝑣2 𝑣3 𝑣4

𝐸− 𝐸+ 𝑛𝐼

𝛼 {𝜔} {𝑣3} 0

𝑣1 {𝑣3} {𝑣4, 𝜔} 0

𝑣2 ∅ ∅ 0

𝑣3 {𝛼} {𝑣1} 0

𝑣4 {𝑣1} {𝜔} 1

𝜔 {𝑣1, 𝑣4} {𝛼} 0

𝑣4𝑣1𝑣2𝜔 𝑣3 𝛼

𝑣1 𝑣2 𝑣3 𝑣4 𝛼 𝜔

s+

𝑣4𝛼𝑣2𝑣3 𝜔 𝑣1

𝑣1 𝑣2 𝑣3 𝑣4 𝛼 𝜔

s−

𝑛𝑆 = 4, 𝐼 = {𝑣4}
𝑅 = {𝛼,𝜔, 𝑣1, 𝑣3}, 𝑋 = {𝑣2}

Figure 4.6: Compact domain implementation. On the left, the partial se-
quence −→𝑠 and the graphs 𝐺 (𝑉 , 𝐸) are shown. Below them is a table showing
the edges 𝐸−, 𝐸+ for the nodes and the counters of insertions 𝑛𝐼 . Below the
table, the successors s+ and the predecessors s− of the nodes (only relevant
for highlighted nodes 𝑣 ∈ −→𝑠 ) are shown. The right part shows the domain
after performing an insertion with (𝛼, 𝑣3, 𝑣1), extending the partial sequence
and removing some edges due to (4.22), (4.23).

The lower-level consistency invariant expressed on the data structures are

given next. We first identify the invariants describing the channeling between

the two data structures.

∀𝑣𝑖 , 𝑣 𝑗 ∈ 𝑉 : 𝑣𝑖 ∈ 𝐸−𝑗 ⇐⇒ 𝑣 𝑗 ∈ 𝐸+𝑖 (4.36)

∀𝑣𝑖 , 𝑣 𝑗 ∈ 𝑉 : s+𝑖 = 𝑣 𝑗 ⇐⇒ s−𝑗 = 𝑣𝑖 (4.37)

Invariant (4.36) ensures that each edge (𝑣𝑖 , 𝑣 𝑗 ) appears twice in the data

structures: one for the adjacency set of the incoming node, and one for the

outgoing node. Invariant (4.37) ensures that for any two nodes 𝑣𝑖 and 𝑣 𝑗 in

the graph, 𝑣𝑖 is the predecessor of 𝑣 𝑗 if and only if 𝑣 𝑗 is the successor of 𝑣𝑖 . It
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guarantees a consistent and mutual relationship between successor and pre-

decessor links for every node in the graph. In addition to the channeling,

specific invariants are used to maintain the counters previously introduced.

𝑛𝑆 = |{𝑣𝑖 | 𝑣𝑖 ∈ 𝑉 ∧ isMember(𝑣𝑖)}| (4.38)

∀𝑣 𝑗 ∈ 𝐼 : 𝑛𝐼 𝑗 = |{𝑣𝑖 | 𝑣𝑖 ∈ 𝐸−𝑗 ∧ isMember(𝑣𝑖)}| (4.39)

∀𝑣𝑖 ∈ 𝑉 : (𝑛𝐼𝑖 ≥ 1) ↔ (𝑣𝑖 ∈ 𝐼 ) (4.40)

The length of the partial sequence is tracked in (4.38). Invariant (4.39) tracks

how many insertions are feasible for a given node 𝑣 𝑗 ∈ 𝐼 , and is equivalent to
(4.33). This counter is used to ensure that every node 𝑣 𝑗 ∈ 𝐼 has at least one
insertion possible (4.40): otherwise the node is not insertable and thus has 0

insertions.

Given the array of successors s+, one can define the set of nodes reachable
from a circuit containing node 𝑣𝑖 ∈ 𝑉 :

circuit(𝑣𝑖) = circuit(𝑣𝑖 , ∅) (4.41)

circuit(𝑣𝑖 , 𝑆) =
{
𝑆 if 𝑣𝑖 ∈ 𝑆
circuit(s+𝑖 , 𝑆 ∪ {𝑣}) otherwise

(4.42)

Intuitively from (4.41), circuit(𝑣𝑖) gives all nodes in the sequence from𝛼 to𝜔 if

𝑣𝑖 is in the sequence, otherwise it returns a set containing only 𝑣𝑖 . This is done

by following recursively the pointers s+ of the successor array. Using this

definition, the implementation invariants used to enforce insert-consistency

(4.18)-(4.20) are as follows.

s+𝜔 = 𝛼 ∧ s−𝛼 = 𝜔 (4.43)

∀𝑣𝑖 , 𝑣 𝑗 ∈ 𝑉 , 𝑣𝑖 ≠ 𝑣 𝑗 :

(
s+𝑖 = 𝑣 𝑗 =⇒ 𝑣 𝑗 ∈ 𝐸+𝑖

)
∧

(
s−𝑗 = 𝑣𝑖 =⇒ 𝑣𝑖 ∈ 𝐸−𝑗

)
(4.44)

∀𝑣𝑖 , 𝑣 𝑗 ∈ 𝑉 , 𝑣𝑖 ≠ 𝑣 𝑗 : s+𝑖 ≠ s+𝑗 (4.45)

∀𝑣𝑖 ∈ 𝑉 : isMember(𝑣𝑖) ⇐⇒ circuit(𝑣𝑖) = circuit(𝛼) (4.46)

∀𝑣𝑖 , 𝑣 𝑗 ∈ 𝑉 , 𝑣𝑖 ≠ 𝑣 𝑗 : ¬isMember(𝑣𝑖) ∧ ¬isMember(𝑣 𝑗 ) =⇒ 𝑣𝑖 ∈ 𝐸−𝑗 (4.47)

∀𝑣𝑖 , 𝑣 𝑗 , 𝑣𝑘 ∈ 𝑉 , 𝑣𝑖 ≠ 𝑣 𝑗 ≠ 𝑣𝑘 : s+𝑖 = 𝑣𝑘 =⇒
(
𝑣𝑖 ∈ 𝐸−𝑗 ⇐⇒ 𝑣𝑘 ∈ 𝐸+𝑗

)
(4.48)

Invariant (4.43) ensures that the successor of the last node 𝜔 being vis-

ited always points toward the first node 𝛼 . Invariant (4.44) enforces that the

current successor of a node 𝑣𝑖 ∈ −→𝑠 exists within the outgoing edges of the

node 𝑣𝑖 , so that (4.18) holds. Invariants (4.45) and (4.46) ensure that only one

sub-circuit is encoded within the successor array. All successors must be dif-

ferent, and if the successor of a node 𝑣𝑖 ∈ 𝑉 is set (i.e. 𝑣𝑖 belongs to the partial
sequence) then 𝑣𝑖 belongs to the circuit of the first node 𝛼 (and the last node
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𝜔 given that circuit(𝛼) = circuit(𝜔)). Invariant (4.47) enforces that all in-

sertable nodes form a clique, so that (4.19) holds. Finally, (4.48) ensures that

the two detour edges (𝑣𝑖 , 𝑣 𝑗 ), (𝑣 𝑗 , 𝑣𝑘 ) needed to insert a node 𝑣 𝑗 ∈ 𝐼 between
consecutive nodes 𝑣𝑖 and 𝑣𝑘 are either both absent or both present, enforcing

(4.20).

Lastly, some invariants interact specifically with the required 𝑅 and ex-

cluded nodes 𝑋 . Moreover, the implementation may modify itself the set of

required nodes 𝑅, so that it always contains nodes from the partial sequence:

−→𝑠 ⊆ 𝑅, given that nodes who are part of the partial sequence are always

visited in all sequences from the domain. The invariants are:

𝑣𝑖 ∈ 𝑋 ⇐⇒ 𝐸−𝑖 = ∅ ⇐⇒ 𝐸+𝑖 = ∅ (4.49)

∀𝑣𝑖 ∈ 𝑉 : isMember(𝑣𝑖) =⇒ 𝑣𝑖 ∈ 𝑅 (4.50)

∀𝑣𝑖 ∈ 𝑅 ∩ 𝐼 : 𝑛𝐼𝑖 > 1 (4.51)

Invariant (4.49) ensures that an excluded node has no edge attached to

it. Invariant (4.50) captures the fact that nodes who are part of the partial

sequence
−→𝑠 are always visited, and thus considered as mandatory. Finally,

invariant (4.51) guarantees that required nodes not part of the sequence have

at least two insertions remaining. Otherwise, if only one pair of detour edges

remained for a node, it would directly be used to add the node to the partial

sequence
−→𝑠 .

4.2.4.3 API and Time Complexity

A sequence domain is fixedwhenever no insertions remain (Definition 4.2.10).

The worst-case time complexity for constructing a sequence is thus 𝑂 ( |𝐸 |).
In the worst case, all edges are removed except those forming the sequence.

Table 4.3 lists all query operations over a sequence variable domain, along

with their associated time complexities. The domain updates are described in

Table 4.4. Given that a compact domain
ˆD includes an insert consistent pair

⟨−→𝑠 ,𝐺 (𝑉 , 𝐸)⟩, it inherits its derivations ↦−→
(𝑣1,𝑣2,𝑣3 )

(insertion) and ̸↦−→
(𝑣1,𝑣2,𝑣3 )

(notBe-

tween) from Definitions 4.2.6 and 4.2.7.

4.2.4.4 Domain Updates

The implementation of the domain updates are described next. Some of them

may trigger a domain wipe-out, depending on the provided arguments.

Insertion Algorithm 5 is used to perform an Sq.insert(𝑣1, 𝑣2) operation on

a compact sequence domain Sq, provided that (𝑣1, 𝑣2, 𝑣3) with 𝑣1 −→ 𝑣3 define

an insertion triplet. The inserted node 𝑣2 is first marked as required, removed
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Operation Description Complexity

isFixed() Returns true if no more insertions remain O(1)
isMember(𝑣𝑖 ) Returns true if 𝑣𝑖 ∈ −→𝑠 O(1)
isRequired(𝑣𝑖 ) Returns true if the node 𝑣𝑖 is required O(1)
isExcluded(𝑣𝑖 ) Returns true if the node 𝑣𝑖 is excluded O(1)
isPossible(𝑣𝑖 ) Returns true if the node 𝑣𝑖 is possible O(1)
isInsertable(𝑣𝑖 ) Returns true if the node 𝑣𝑖 is insertable O(1)
getNext(𝑣𝑖 ) Returns the successor s+𝑖 of node 𝑣𝑖 O(1)
getPrev(𝑣𝑖 ) Returns the predecessor s−𝑖 of node 𝑣𝑖 O(1)

nInsert(𝑣𝑖 ) Returns the number of insertions for 𝑣𝑖 O(1)
nMember() Returns the size 𝑛𝑆 of the partial sequence O(1)
getMember() Enumerates nodes in the partial sequence

−→𝑠 Θ( |−→𝑠 |)
getRequired() Enumerates the required nodes 𝑅 Θ( |𝑅 |)
getExcluded() Enumerates the excluded nodes 𝑋 Θ( |𝑋 |)
getPossible() Enumerates the possible nodes 𝑃 Θ( |𝑃 |)
getInsertable() Enumerates the insertable nodes 𝐼 Θ( |𝐼 |)

getEdgesTo(𝑣𝑖 ) Enumerates 𝐸−𝑖 Θ( |𝐸−𝑖 |)
getEdgesFrom(𝑣𝑖 ) Enumerates 𝐸+𝑖 Θ( |𝐸+𝑖 |)

canInsert(𝑣𝑖 , 𝑣 𝑗 ) Returns true if (𝑣𝑖 , 𝑣 𝑗 , getNext(𝑣𝑖 )) is an
insertion triplet

O(1)

getInsert(𝑣 𝑗 ) Enumerates { 𝑣𝑖 | 𝑣𝑖 ∈ 𝐸−𝑗 ∧ canInsert(𝑣𝑖 , 𝑣 𝑗 )} Θ(min( |−→𝑠 |,
|𝐸−𝑗 |))

getInsertAfter(𝑣 𝑗 , 𝑝) Enumerates { 𝑣𝑖 | 𝑝 ≺ 𝑣𝑖 ∧ canInsert(𝑣𝑖 , 𝑣 𝑗 )} O(|−→𝑠 |)

Table 4.3: Queries on a compact sequence domain.

Operation Update Complexity

notBetween(𝑣𝑖 , 𝑣 𝑗 , 𝑣𝑘 ) ̸↦−→
(𝑣𝑖 ,𝑣𝑗 ,𝑣𝑘 )

{
O(|𝐼 |) if 𝑣𝑖 −→ 𝑣𝑘

O(|𝑉 |) otherwise

insert(𝑣𝑖 , 𝑣 𝑗 ) ↦−→
(𝑣𝑖 ,𝑣𝑗 ,getNext(𝑣𝑖 ) )

Θ( |𝐸−𝑗 |)

insertAtEnd(𝑣𝑖 ) ↦−→
(getPrev(𝜔 ),𝑣𝑖 ,𝜔 )

Θ( |𝐸−𝑖 |)

require(𝑣𝑖 ) 𝑅 ← 𝑅 ∪ { 𝑣𝑖 } O(|𝐸−𝑖 |)
exclude(𝑣𝑖 ) 𝑋 ← 𝑋 ∪ { 𝑣𝑖 } O(|𝐸−𝑖 |)

Table 4.4: Updates on a compact sequence domain.

from the insertable nodes and the size 𝑛𝑆 of the partial sequence
−→𝑠 is incre-

mented (lines 1 to 4). Then, every node 𝑣𝑖 linked to 𝑣2 is inspected (line 6).

If a node 𝑣𝑖 belongs to both the partial sequence
−→𝑠 and to the ingoing edges
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of 𝑣2, it previously defined an insertion triplet (𝑣𝑖 , 𝑣2, s+𝑖 ) for 𝑣2. The corre-

sponding detour edges for 𝑣2 are removed, according to (4.22) (lines 8 to 11).

Otherwise, if 𝑣𝑖 did not belong to
−→𝑠 , lines 13 and 14 ensure that detour edges

appear together, deleting invalid links per (4.23). Finally, if the node 𝑣𝑖 could

be inserted previously between 𝑣1 and 𝑣3, it can now be inserted between both

𝑣1, 𝑣2 and 𝑣2, 𝑣3, increasing its counter𝑛𝐼𝑖 (line 16). Lastly, the edges, successor

and predecessor of 𝑣1, 𝑣2 and 𝑣3 are updated to reflect the insertion (lines 17

to 19).

Algorithm 5: Sq.insert(𝑣1, 𝑣2)
Input: Sq: compact sequence domain, 𝑣1 the predecessor after which

the insertion must be done, 𝑣2 node to insert

Precondition: node 𝑣2 is insertable after node 𝑣1 (i.e. (𝑣1, 𝑣2), (𝑣2, 𝑣3)
is a pair of detour edges, with 𝑣1 −→ 𝑣3)

1 𝑅 ← 𝑅 ∪ {𝑣2}
2 𝐼 ← 𝐼 \ {𝑣2}
3 𝑛𝐼2 ← 0

4 𝑛𝑆 ← 𝑛𝑆 + 1

5 𝑣3 ← s+
1

6 for 𝑣𝑖 ∈ 𝐸−2 do
7 if Sq.isMember(𝑣𝑖) then
8 if 𝑣𝑖 ≠ 𝑣1 then
9 𝐸+𝑖 ← 𝐸+𝑖 \ {𝑣2}, 𝐸−2 ← 𝐸−

2
\ {𝑣𝑖}

10 𝑣 𝑗 ← s+𝑖
11 𝐸+

2
← 𝐸+

2
\ {𝑣 𝑗 }, 𝐸−𝑗 ← 𝐸−𝑗 \ {𝑣2}

12 else if not Sq.canInsert(𝑣1, 𝑣𝑖) then
13 𝐸+

2
← 𝐸+

2
\ {𝑣𝑖}, 𝐸−𝑖 ← 𝐸−𝑖 \ {𝑣2}

14 𝐸+𝑖 ← 𝐸+𝑖 \ {𝑣2}, 𝐸−2 ← 𝐸−
2
\ {𝑣𝑖}

15 else
16 𝑛𝐼𝑖 ← 𝑛𝐼𝑖 + 1

17 s+
1
← 𝑣2, s+2 ← 𝑣3

18 s−
3
← 𝑣2, s−2 ← 𝑣1

19 𝐸+
1
← 𝐸+

1
\ {𝑣3}, 𝐸−3 ← 𝐸−

3
\ {𝑣1}

In the implementation, if (𝑣1, 𝑣2, 𝑣3) does not define an insertion triplet,

two situations may occur:

1. If 𝑣2 is already within the partial sequence and lies after 𝑣1 (i.e. 𝑣1, 𝑣2 ∈
−→𝑠 ∧ 𝑣1 ≺ 𝑣2), the insertion is considered as having already been per-

formed. Nothing happens in this case.

2. Otherwise, 𝑣2 cannot be inserted. This corresponds to a domain wipe-
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out.

NotBetween Algorithm 6 performs a Sq.notBetween(𝑣1, 𝑣2, 𝑣3) operation
on a compact sequence domain Sq. It iterates over the nodes 𝑣𝑖 between the

nodes 𝑣1 and 𝑣3 (line 1), removes the detour edges allowing to insert 𝑣2 after

𝑣𝑖 , and decrements its counter of insertion 𝑛𝐼2 (lines 4 to 6). If the counter of

insertion reaches 0, the node must be excluded due to (4.40), hence removing

the node 𝑣2 from 𝐼 and marking it as excluded (lines 8 and 9). In this case,

all edges passing through the node are removed. In contrast, if the counter

of insertion reaches 1 and the node is required (line 14), it is automatically

inserted at its only remaining insertion (lines 15 and 16).

Algorithm 6: Sq.notBetween(𝑣1, 𝑣2, 𝑣3)
Input: Sq: compact sequence domain, 𝑣1, 𝑣3 two nodes in the partial

sequence
−→𝑠 between which node 𝑣2 ∈ 𝑉 \ −→𝑠 cannot appear.

1 for 𝑣𝑖 ∈ −→𝑠 | 𝑣1 ⪯ 𝑣𝑖 ≺ 𝑣3 do
2 if Sq.canInsert(𝑣𝑖 , 𝑣2) then
3 𝑣 𝑗 ← s+𝑖
4 𝐸−

2
← 𝐸−

2
\ {𝑣𝑖}, 𝐸+𝑖 ← 𝐸+𝑖 \ {𝑣2}

5 𝐸−𝑗 ← 𝐸−𝑗 \ {𝑣2}, 𝐸+2 ← 𝐸+
2
\ {𝑣 𝑗 }

6 𝑛𝐼2 ← 𝑛𝐼2 − 1

7 if 𝑛𝐼2 = 0 then
8 𝑋 ← 𝑋 ∪ {𝑣2}
9 𝐼 ← 𝐼 \ {𝑣2}

10 for 𝑣𝑘 ∈ 𝐼 do
11 𝐸−

𝑘
← 𝐸−

𝑘
\ {𝑣2}, 𝐸+𝑘 ← 𝐸+

𝑘
\ {𝑣2}

12 𝐸−
2
← ∅, 𝐸+

2
← ∅

13 return
14 if 𝑛𝐼2 = 1 and 𝑣2 ∈ 𝑅 then
15 {𝑣𝑖} ← Sq.getInsert(𝑣2)
16 Sq.insert(𝑣𝑖 , 𝑣2)

Algorithm 6 is frequently called with 𝑣3 being the direct successor of 𝑣1:

𝑣1 −→ 𝑣3. If so, only one iteration occurs at line 1, with 𝑣𝑖 = 𝑣1, and edge

deletion occurs in constant time if 𝑣2 does not become excluded or inserted.

Similarly to the insert operation, a specific situation must be checked in

the implementation if (𝑣1, 𝑣2, 𝑣3) does not define a pair of detour edges. In case
all nodes belong to the sequence and are consecutive (𝑣1, 𝑣2, 𝑣3 ∈ −→𝑠 ∧𝑣1 ≺ 𝑣2 ≺
𝑣3), a domain wipe-out is triggered. No filtering occurs if 𝑣3 ⪯ 𝑣1.
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Require Requiring a node 𝑣𝑖 is simply obtained by marking the node as

required (𝑅 ← 𝑅 ∪ {𝑣𝑖}) and inserting it in case only insertion remained for

it (𝑛𝐼𝑖 = 1).
In case the node was excluded, a domain wipe-out occurs.

Exclude Excluding a node 𝑣𝑖 is simply obtained by marking the node as

excluded (𝑋 ← 𝑋 ∪{𝑣𝑖}) and removing all edges connected to it. Even though

edges are removed within the graph, only the insertion counter 𝑛𝐼𝑖 is affected.

The counters related to other nodes 𝑣 𝑗 ∈ 𝐼 ∧ 𝑣𝑖 ≠ 𝑣 𝑗 are not changed by edge

removals, as any edge (𝑣𝑖 , 𝑣 𝑗 ) (or (𝑣 𝑗 , 𝑣𝑖)) being removed could not be a detour

edge: no endpoint of the edge is within the partial sequence
−→𝑠 .

In case the node was required, a domain wipe-out occurs.

4.2.4.5 Visit of Nodes as Boolean Variables

Given the set of mandatory nodes 𝑅, one can easily create a binary variable

R𝑖 (
−→
𝑆 ) for any node 𝑣𝑖 ∈ 𝑉 , telling if the node is visited (value 1: 𝑣𝑖 ∈ 𝑅) or not

(value 0: 𝑣𝑖 ∉ 𝑅) by a sequence variable
−→
𝑆 with domain D. In CP, this can be

implemented as a view over the compact sequence domain, making the usage

of such variables cheap once a sequence variable has been created, as in [ST13;

VM14; MSV21]. Fixing a boolean variableR𝑖 (
−→
𝑆 ) to 1may automatically insert

it within the partial sequence.

Thanks to the usage of those binary variables, one can easily enforce log-

ical constraints over sequences variables. For instance to force a sequence
−→
𝑆

to visit at least 𝑛 nodes (

∑
𝑣𝑖 ∈𝑉 R𝑖 (

−→
𝑆 ) ≥ 𝑛), enforce two nodes 𝑣𝑖 , 𝑣 𝑗 ∈ 𝑉 to

always be visited together (R𝑖 (𝑆𝑞) = R 𝑗 (𝑆𝑞)), etc. More complex constraints,

with specific propagators, are presented in section 4.3.

Operation on boolean variable Corresponding operation on −→𝑆

Queries
|D(R𝑖 (

−→
𝑆 )) | = 1 ⇐⇒ ¬−→𝑆 .isPossible(𝑣𝑖 )

false ∈ D(R𝑖 (
−→
𝑆 )) ⇐⇒ ¬−→𝑆 .isRequired(𝑣𝑖 )

true ∈ D(R𝑖 (
−→
𝑆 )) ⇐⇒ ¬−→𝑆 .isExcluded(𝑣𝑖 )

Updates
D(R𝑖 (

−→
𝑆 )) ← {true} ⇐⇒ −→

𝑆 .require(𝑣𝑖 )
D(R𝑖 (

−→
𝑆 )) ← {false} ⇐⇒ −→

𝑆 .exclude(𝑣𝑖 )

Table 4.5: Operations on a boolean variable R𝑖 (𝑆𝑞) defined over a node 𝑣𝑖 in
a sequence variable −→𝑆 . The top 3 operations are queries over the domain,
while the bottom 2 are domain updates.
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4.2.4.6 Space Complexity

Each sparse-set of 𝑛 values requires 2𝑛 entries (the two arrays used by the

sparse-set) and 1 reversible integer. Combining all sparse-sets in the domain

implementation with the other reversible integers that are maintained, this

gives a total of 4𝑛2+4𝑛 entries for integer arrays, and 5𝑛+4 reversible integers,

with 𝑛 the number of nodes on which the sequence variable is defined.

In comparison, a successor model encoding only the outgoing edges for

each node would require one sparse-set per node, giving 2𝑛2
entries for in-

teger arrays and 𝑛 reversible integers. In both cases, the space complexity is

quadratic with respect to 𝑛. However, on a VRP with 𝑘 vehicles, a successor

model remains inO(𝑛2) while amodel using sequence variables is inO(𝑘 ·𝑛2).

4.3 Constraints

Many useful global constraints can be defined on sequence variables. This

section only focuses on those required by numerous VRP applications, such

as the Dial-a-Ride Problem.

Consistency of a constraint on a sequence variable. Similar to standard

consistency notions for filtering algorithms over finite integer domains, one

can define consistency properties for a constraint over a sequence domain.

In the next definitions, we will denote with S(𝑐) all sequences being so-

lutions to a constraint 𝑐 .

Definition 4.3.1. A constraint 𝑐 over a sequence domain
ˆD is insert con-

sistent if and only if every insertion triplet on the domain participates in a

derivation compatible with the constraint. More formally, if and only if for

every insertion
ˆD ↦−→
(𝑣1,𝑣2,𝑣3 )

ˆD′, we have that ˆD′ ∩ S(𝑐) ≠ ∅.

Definition 4.3.2. Given a sequence domain
ˆD = ⟨𝑅,𝑋, −→𝑠 , 𝐹 ⟩, we define its

required-relaxed sequence domain as
˜D = ⟨{∅, 𝑋, −→𝑠 , 𝐹 ⟩, which considers that

only nodes in the partial sequence are required. A constraint 𝑐 over a se-

quence domain
ˆD is relaxed-insert consistent if and only if every insertion

triplet on its required-relaxed sequence domain participates in a derivation

compatible with the constraint. More formally, if and only if for every inser-

tion
˜D ↦−→
(𝑣1,𝑣2,𝑣3 )

˜D′, we have that ˜D′ ∩ S(𝑐) ≠ ∅.

Given that ∅ ⊆ 𝑅, the relaxed-insert consistency property for a constraint 𝑐
is thus a relaxed form of insert consistency. The filtering algorithms that we in-

troduce are relatively basic and aim to reach relaxed-insert consistency rather

than insert consistency, which may be NP-hard to reach for some constraints.
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Those definitions are quite different from, for instance, domain consis-

tency for integer variables, which require all values in the domain to belong

to a solution. This is due to the fact that an arbitrary sequence from the

domain cannot be removed: the domain may only be modified through the

updates described in Table 4.4. Therefore, we can only restrict the domain

updates that are allowed, which translates to limiting the insertions that may

be performed with those definitions.

4.3.1 Distance

The Distance constraint is used to represent the travel length in a sequence of

nodes. It links an integer variable Dist to the traveled distance between nodes

in a sequence variable, through transitions defined in a matrix 𝒅 ∈ Z |𝑉 |× |𝑉 |
satisfying the triangular inequality

2
.

Distance(−→𝑆 , 𝒅,Dist) ↔
∑︁

𝑣𝑖

−→
𝑆−→𝑣𝑗

𝒅𝑖, 𝑗 = Dist (4.52)

Filtering The filtering is presented in Algorithm 7. First, the traveled dis-

tance over the partial sequence
−→𝑠 is computed (line 1). If the sequence variable

is fixed, this fixes the value of the integer variableDist (line 5). Otherwise, this
is used to set its partial sequence (line 5) and compute the length of the longest

detour still possible (line 6). All insertions for every insertable node 𝑣 𝑗 ∈ 𝐼 are
then looked, and if the cost of the detour for inserting a node 𝑣 𝑗 between two

consecutive nodes 𝑣𝑖 and 𝑣𝑘 is too high, it is removed (lines 10 to 12). In the

worst case, the filtering empties 𝐸, safe for the edges belonging to the current

sequence
−→𝑠 , giving a time complexity of O(|𝐸 |).

Algorithm 7 follows a structure used in most filtering algorithms over se-

quence variables. The partial sequence
−→𝑠 is first traversed and potentially

used to filter other variables. Then, insertion triplets are inspected and pos-

sibly removed if their related detour is invalid.

This filtering is not idempotent: after applying a filtering on a domain,

another application of the same filtering algorithm may further change the

domain. Indeed, removing a detour for node 𝑣 𝑗 at line 12 may insert 𝑣 𝑗 due to

a past require operation, hence requiring to recompute the length and trigger

again the filtering, possibly causing further changes. Algorithm 7 needs thus

to be triggered at every insertion in order to reach a fixpoint. More complex

filtering may be considered, for instance, updating the distance upper bound

2
The triangular inequality over a matrix 𝒅 ∈ Z |𝑉 |× |𝑉 | holds iff 𝒅𝑖, 𝑗 + 𝒅 𝑗,𝑘 ≥ 𝒅𝑖,𝑘 ∀𝑖, 𝑗, 𝑘 ∈

{0, . . . , |𝑉 | − 1}.
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Algorithm 7: Distance(−→𝑆 , 𝒅,Dist) constraint filtering.
1 length← ∑

𝑣𝑖

−→
𝑠−→𝑣𝑗

𝒅𝑖, 𝑗

2 if −→𝑆 .isFixed() then
3 Dist← length
4 else
5 ⌊Dist⌋ ← max(length, ⌊Dist⌋)
6 maxDetour← ⌈Dist⌉ − length
7 for 𝑣 𝑗 ∈

−→
𝑆 .getInsertable() do

8 for 𝑣𝑖 ∈
−→
𝑆 .getInsert(𝑣 𝑗 ) do

9 𝑣𝑘 ←
−→
𝑆 .getNext(𝑣𝑖)

10 cost← 𝒅𝑖, 𝑗 + 𝒅 𝑗,𝑘 − 𝒅𝑖,𝑘
11 if cost > maxDetour then
12

−→
𝑆 .notBetween(𝑣𝑖 , 𝑣 𝑗 , 𝑣𝑘 )

⌈Dist⌉ by a minimum spanning tree computation over the remaining edges of

the graph.

4.3.2 TransitionTimes

The TransitionTimes constraint is used for problems where node visits in-

volve a service time and are restricted by time window constraints, with a

transition time required to move from one node to the next, as specified by

a transition time matrix. More formally, each node 𝑣𝑖 ∈ 𝑉 is attached to an

integer variable Start𝑖 representing the start of the service at that node and a
service duration value 𝒔𝑖 . A matrix 𝒅 ∈ Z |𝑉 |× |𝑉 | defines the transition times

between elements and satisfies the triangular inequality. The definition of the

constraint is then:

TransitionTimes(−→𝑆 , Start, 𝒔, 𝒅) ↔ ∀𝑣𝑖
−→
𝑆

≺ 𝑣 𝑗 : Start𝑖 + 𝒔𝑖 + 𝒅𝑖, 𝑗 ≤ Start𝑗 (4.53)

We consider that waiting at a given node (i.e. reaching it before its time

window without beginning the task related to it) is possible, which is why

(4.53) uses inequalities. Moreover, the start variable Start𝑣 of an excluded

node 𝑣 ∉
−→
𝑆 is not constrained.

Filtering The filtering occurs in two steps. First, the bounds of the time

windows related to visited nodes are updated by iterating over the partial

sequence
−→𝑠 , in order:

⌊Start𝑗 ⌋ ←max

(
⌊Start𝑗 ⌋, ⌊Start𝑖⌋ + 𝑠𝑖 + 𝑑𝑖, 𝑗

)
∀𝑣𝑖 −→ 𝑣 𝑗 (4.54)

⌈Start𝑖⌉ ←min

(
⌈Start𝑖⌉, ⌈Start𝑗 ⌉ − 𝑠𝑖 − 𝑑𝑖, 𝑗

)
∀𝑣𝑖 −→ 𝑣 𝑗 (4.55)
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This step can be implemented in O(|−→𝑠 |). Next, all insertion triplets

(𝑣𝑖 , 𝑣 𝑗 , 𝑣𝑘 ) are inspected, similarly to line 8 of Algorithm 7. Each triplet can be

used to define the earliest and latest arrival at node 𝑣 𝑗 :

ea = ⌊Start𝑖⌋ + 𝑠𝑖 + 𝑑𝑖, 𝑗 (4.56)

la = ⌈Start𝑘⌉ − 𝑠 𝑗 − 𝑑 𝑗𝑘 (4.57)

Triplets corresponding to time window violations are removed:

(ea > ⌈Start𝑗 ⌉) ∨ (la < ⌊Start𝑗 ⌋) ∨ (ea > la)
=⇒ −→

𝑆 .notBetween(𝑣𝑖 , 𝑣 𝑗 , 𝑣𝑘 )
(4.58)

In (4.58), if either reaching node 𝑣 𝑗 cannot be done within its time win-

dow, or if doing a detour through it would violate the time window of 𝑣𝑘 ,

the insertion is removed. This shares some similarities with the work from

[Sav85], where time windows are used for checking the validity of moves in

local search. Finally, a time window update is performed for nodes 𝑣 𝑗 ∈ 𝑅 \ −→𝑠
that are required but not yet inserted:

⌊Start𝑗 ⌋ ←max

(
⌊Start𝑗 ⌋, min

𝑣𝑖 ∈
−→
𝑆 .getInsert(𝑣𝑗 )

⌊Start𝑖⌋ + 𝑠𝑖 + 𝑑𝑖, 𝑗

)
(4.59)

⌈Start𝑗 ⌉ ←min

(
⌈Start𝑗 ⌉, max

𝑣𝑖 ∈
−→
𝑆 .getInsert(𝑣𝑗 ),𝑣𝑖 −→ 𝑣𝑘

⌈Start𝑘⌉ − 𝑠 𝑗 − 𝑑 𝑗,𝑘

)
(4.60)

The visit time of such nodes are updated based on their earliest predeces-

sor and latest successor in (4.59), (4.60) respectively. The time complexity of

the filtering is the same as in the Distance constraint: O(|𝐸 |). Although we

reason over a set of required nodes as in [TKS20], we do not ensure that a

valid transition exists among all required nodes: this problem is NP-complete

and would be too computationally expensive to perform at every filtering.

4.3.3 Precedence

For some applications, visiting a set of nodes in a specific order is important,

such as the visit of a pickup that must be done before visiting the correspond-

ing drop-off. The Precedence constraint can be used in such scenarios, ensur-

ing that an ordered set of nodes
−→𝑜 appears in the same order in a sequence

variable (
−→𝑜 being a fixed sequence, not a variable). It is formally defined as

Precedence(−→𝑆 , −→𝑜 ) ↔ ∀𝑣𝑖
−→𝑜
≺ 𝑣 𝑗 : 𝑣𝑖 , 𝑣 𝑗 ∈

−→
𝑆 =⇒ 𝑣𝑖

−→
𝑆

≺ 𝑣 𝑗 (4.61)

Note that some or all nodes in
−→𝑜 may be absent from the sequence vari-

able. If the nodes from the set
−→𝑜 must be all present or all absent, one can

easily enforce this with O(|−→𝑜 |2) equality constraints: ∀𝑣𝑖 , 𝑣 𝑗 ∈ −→𝑜 : R𝑖 (
−→
𝑆 ) =

R 𝑗 (
−→
𝑆 ).
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Filtering The filtering consists of two main steps.

1. First, it considers the partial sequence
−→𝑠 and ensures that nodes cur-

rently belonging to
−→𝑜 ∩ −→𝑠 appears in the same order in both

−→𝑜 and

−→𝑠 . This step can be implemented in O(max( |−→𝑜 |, |−→𝑠 |)) and results in a

failure if the ordering in
−→𝑠 violates the one from

−→𝑜 .

2. Next, it considers the insertable nodes from the ordering to respect (
−→𝑜 ),

removing detours edges that would violate the ordering from
−→𝑜 if used

for insertions. This is described in Algorithm 8. A set 𝑄 tracks the

nodes whose detours will be filtered. The main loop iterates over each

node 𝑣𝑘 ∈ −→𝑜 , as well as the end of the sequence 𝜔 . If 𝑣𝑘 is insertable

(i.e., it is not yet in −→𝑠 ), it is added to 𝑄 for potential detour filtering

(line 5). On the contrary, if 𝑣𝑘 is already in
−→𝑠 , it serves as a boundary

for the nodes in 𝑄 . For each node 𝑣 𝑗 in 𝑄 , we enforce that it can only

be inserted between 𝑣𝑖 and 𝑣𝑘 , where:

■ 𝑣𝑖 is the previous node in
−→𝑜 that also belongs to

−→𝑠 , found in a

previous iteration.

■ 𝑣𝑘 (currently being iterated over) is the next node after 𝑣 𝑗 in
−→𝑜

that belongs to
−→
𝑆 .

To enforce this consistency, we remove all detour edges for 𝑣 𝑗 that

would insert it before 𝑣𝑖 or after 𝑣𝑘 (line 7), preserving only detour edges

consistent with the required precedence.

Algorithm 8: Precedence(−→𝑆 , −→𝑜 ) constraint filtering for invalid de-

tours.

1 𝑄 ← ∅
2 𝑣𝑖 ← 𝛼

3 for 𝑣𝑘 ∈ −→𝑜 · 𝜔 do
4 if −→𝑆 .isInsertable(𝑣𝑘 ) then
5 𝑄 ← 𝑄 ∪ {𝑣𝑘 }
6 else if −→𝑆 .isMember(𝑣𝑘 ) then
7 for 𝑣 𝑗 ∈ 𝑄 do

// 𝑣 𝑗 can only be inserted between 𝑣𝑖 and 𝑣𝑘

8
−→
𝑆 .notBetween(𝛼, 𝑣 𝑗 , 𝑣𝑖)

9
−→
𝑆 .notBetween(𝑣𝑘 , 𝑣 𝑗 , 𝜔)

10 𝑄 ← ∅
11 𝑣𝑖 ← 𝑣𝑘
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The time complexity of the filtering is dominated by Algorithm 8, running

in O(|−→𝑜 | · |𝑉 |).

Example 4.3.1. An example of the filtering is illustrated in Figure 4.7. The

current partial sequence is
−→
𝑆 = 𝛼 · 𝑣1 · 𝑣3 · 𝑣5 · 𝜔 . The ordering to enforce is

−→𝑜 = 𝑣2 · 𝑣3 · 𝑣4. The first step of the filtering, checking the ordering, does not

trigger any failure. Algorithm 8 is then used for the second step. The four

iterations done at line 3 are as follows:

1. 𝑣𝑘 = 𝑣2. Given that 𝑣2 ∈ 𝐼 , 𝑄 becomes {𝑣2}.

2. 𝑣𝑘 = 𝑣3, which belong to
−→𝑠 . The nodes in the queue 𝑄 must be placed

between 𝑣𝑖 and 𝑣𝑘 (here forcing 𝑣2 to be placed between 𝛼 and 𝑣3).

This is done by two calls:
−→
𝑆 .notBetween(𝛼, 𝑣2, 𝛼) (doing nothing) and

−→
𝑆 .notBetween(𝑣3, 𝑣2, 𝜔). Finally, 𝑣𝑖 becomes 𝑣3 and 𝑄 is emptied.

3. 𝑣𝑘 = 𝑣4. Given that 𝑣4 ∈ 𝐼 , 𝑄 becomes {𝑣4}.

4. 𝑣𝑘 = 𝜔 , enforcing nodes in 𝑄 to be placed between 𝑣3 and

𝜔 . The two calls at lines 8, 9 are
−→
𝑆 .notBetween(𝛼, 𝑣4, 𝑣3) and

−→
𝑆 .notBetween(𝜔, 𝑣4, 𝜔) (the latter doing nothing).

𝛼 𝑣1 𝑣3 𝑣5 𝜔

𝑣2

𝑣4

𝛼 𝑣1 𝑣3 𝑣5 𝜔

𝑣2

𝑣4

Figure 4.7: Precedence constraint with −→𝑜 = 𝑣2 · 𝑣3 · 𝑣4, before filtering (left)
and after filtering (right). Edges (𝑣2, 𝑣4) and (𝑣4, 𝑣2) are present but not drawn
for clarity.
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4.3.4 Cumulative

Some variations of VRPs involve pickup and deliveries, transporting goods or

people. The Cumulative constraint can be used to represent those scenarios.

It ensures that going through all pickups and deliveries visited in a sequence

respects an assigned capacity.

More specifically, let us define an activity 𝑖 as a pair of nodes (𝒔𝑖 , 𝒆𝑖 ) cor-
responding to its start (pickup) and end (delivery), respectively. The set of all

activities is written 𝐴. An activity 𝑖 ∈ 𝐴 consumes a certain load 𝒍𝑖 during
its execution and can be in one of three states with respect to the current se-

quence
−→
𝑆 : fully inserted if 𝒔𝑖 ∈ 𝑆 ∧ 𝒆𝑖 ∈ 𝑆 , non-inserted if 𝒔𝑖 ∉ 𝑆 ∧ 𝒆𝑖 ∉ 𝑆 , and

partially inserted otherwise (the start or the end is inserted but not both). The

Cumulative constraint with a maximum capacity 𝑐 , with starts 𝒔, correspond-
ing ends 𝒆 and loads 𝒍 is defined as:

Cumulative(−→𝑆 , 𝒔, 𝒆, 𝒍, 𝑐) ↔


(
∀𝑣 ∈ −→𝑆 :

∑
𝑖∈𝐴 |𝒔𝑖⪯𝑣≺𝒆𝑖 𝒍𝑖 ≤ 𝑐

)
∧(

∀𝑖 ∈ 𝐴 : 𝒔𝑖 ∈
−→
𝑆 ⇐⇒ 𝒆𝑖 ∈

−→
𝑆

)
∧(

∀𝑖 ∈ 𝐴 : Precedence(−→𝑆 , (𝒔𝑖 , 𝒆𝑖))
) (4.62)

This constraint implies that the start 𝒔𝑖 of an activity 𝑖 ∈ 𝐴 is visited before

its end 𝒔𝑖 (∀𝑖 ∈ 𝐴 : Precedence(−→𝑆 , (𝒔𝑖 , 𝒆𝑖))), and that its nodes are either both

present or both absent (∀𝑖 ∈ 𝐴 : R𝒔𝑖 (
−→
𝑆 ) = R𝒆𝑖 (

−→
𝑆 )). An example of sequence

over which the constraint holds is presented in Figure 4.8.

𝛼 𝑠0 𝑠1 𝑒1 𝑒0 𝑠3 𝑒3 𝜔 𝑠2

𝑒2

𝛼 𝑠0 𝑠1 𝑒1 𝑒0 𝑠3 𝑒3 𝜔

0

1

3

−→
𝑆

3

2

1

L
o
a
d

Figure 4.8: Cumulative(−→𝑆 , (𝑠0, 𝑠1, 𝑠2, 𝑠3), (𝑒0, 𝑒1, 𝑒2, 𝑒3), (2, 1, 1, 2), 3) over a fixed se-
quence variable −→𝑆 = 𝛼 · 𝑠0 · 𝑠1 · 𝑒1 · 𝑒0 · 𝑠3 · 𝑒3 · 𝜔 . The sequence is shown at the
top, and the graph below shows the accumulated load over the nodes in the
sequence. Nodes 𝑠2, 𝑒2 from activity 2 are not part of the sequence.

Filtering Firstly, to ensure that the start 𝒔𝑖 and the end 𝒆𝑖 of an activity

𝑖 ∈ 𝐴 are visited together and in a valid order, two constraints are added

per request. Constraint R𝒔𝑖 (𝑆𝑞) = R𝒆𝑖 (𝑆𝑞) ensures that the two nodes 𝒔𝑖 , 𝒆𝑖
appear together, and Precedence(𝑆𝑞, (𝒔𝑖 · 𝒆𝑖)) ensures that the start 𝒔𝑖 appears
before the end 𝒆𝑖 . The remaining filtering consists of 3 steps: computing a
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load profile, filtering the partially inserted activities and then the non-inserted

activities.

A lower bound on the load profile is computed based on the activities that

are fully and partially inserted, representing the sum of resources being con-

sumed at each node in the sequence. It is described by three values showing

the accumulated load of each inserted node 𝑣 ∈ −→𝑠 :

■ 𝒍−𝑣 for the accumulated load before the visit of 𝑣 ;

■ 𝒍+𝑣 for the accumulated load at the visit of 𝑣 ;

■ 𝒍𝑣+1𝑣 for the accumulated load between the visit of 𝑣 and its successor.

A load profile example is shown on Figure 4.9. Using three values per

node to represent the load profile may seem odd. One may think that it is not

necessary to represent the load 𝒍𝑣+1𝑣 between the visit of node 𝑣 and its suc-

cessor, and that only the load when entering (𝒍−𝑣 ) and leaving (𝒍+𝑣 ) node 𝑣 are
relevant. However, those values are needed to accurately represent whether

activities may be put between a node and its successor, as shown in Figure

4.10.

For each fully inserted activity 𝑖 , the load of 𝑖 is added between the nodes:

∀𝒔𝑖 ≺ 𝑣 ⪯ 𝒆𝑖 : 𝒍−𝑣 ← 𝒍−𝑣 + 𝒍𝑖 , ∀𝒔𝑖 ⪯ 𝑣 ≺ 𝒆𝑖 : 𝒍+𝑣 ← 𝒍+𝑣 + 𝒍𝑖 ∧ 𝒍𝑣+1𝑣 ← 𝒍𝑣+1𝑣 + 𝒍𝑖 . When

considering only the inserted activities, it follows that ∀𝑣 ∈ −→𝑠 : 𝒍+𝑣 = 𝒍𝑣+1𝑣 .

Those equalities do not hold anymore after considering the partially inserted

activities.

For partially inserted activities with a start inserted, a node from the par-

tial sequence
−→𝑠 is used instead of the non-inserted end node to compute the

load. It corresponds to the earliest node after the start node or the start node

itself, after which the non-inserted end can be inserted. Partially inserted

activities with the end inserted behave similarly, considering the latest node

preceding the end, after which the start node can be inserted.

Example 4.3.2. On Figure 4.9, activity 0 is partially inserted. The earliest

predecessor for 𝑒0 is 𝑠0, which only contributes to the load 𝒍𝑠0+1
𝑠0

. For the par-

tially inserted activity 1, the earliest predecessor of 𝑒1 is 𝑒2, contributing to

𝒍+𝑠1

, 𝒍𝑠1+1
𝑠1

, 𝒍−𝑒2

, 𝒍+𝑒2

(but not 𝒍𝑒2+1
𝑒2

).

Setting an entry in 𝒍−, 𝒍+ or 𝒍+1 exceeding the capacity triggers a failure.

Given the load profile, the filtering then removes invalid detours for the

partially inserted activities and the non-inserted activities. Algorithm 9 de-

picts the filtering for every non-inserted activity 𝑖 ∈ 𝐴 whose start 𝒔𝑖 is in-
serted but not its corresponding end 𝒆𝑖 . It first finds the closest node 𝑣 after
which the end 𝒆𝑖 can be inserted (line 3), triggering a failure if no such node

exists (line 6). Note that this closest node 𝑣 was already used to set the load of
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activity 𝑖 during the load profile computation, and therefore is alreadymarked

as valid (line 7). The next nodes to inspect are thus the nodes following 𝑣 , in

order. As soon as the capacity occurring at a node 𝑣 does not allow insert-

ing the end 𝒆𝑖 of the activity, all detours between this invalid node 𝑣 and the

end 𝜔 of the sequence are removed (line 9). A similar filtering is performed

in a mirror fashion, considering the non-inserted activities whose ends are

inserted but not the corresponding start.

Finally, the filtering removes invalid edges for the non-inserted activities.

It uses the filtering introduced in [TKS20], that inspects every start (and end)

of activities, and checks if a matching end (and start) can be found, removing

detours when no match exists.

Algorithm 9: Filtering of the Cumulative(−→𝑆 , 𝒔, 𝒆, 𝒍, 𝑐) constraint for
partially inserted activities with start inserted.

Input: −→𝑆 : sequence variable, 𝒔, 𝒆, 𝒍 : start, end and load of activities, 𝑐:
capacity.

1 for 𝑖 ∈ 𝐴 s.t.
(−→
𝑆 .isMember(𝒔𝑖) and not −→𝑆 .isMember(𝒆𝑖)

)
do

2 𝑣 ← 𝒔𝑖
3 while not −→𝑆 .canInsert(𝑣, 𝒆𝑖) do
4 𝑣 ← −→𝑆 .getNext(𝑣)
5 if 𝑣 = 𝜔 then
6 return failure
7 𝑣 ← −→𝑆 .getNext(𝑣)
8 while 𝑣 ≠ 𝜔 do
9 if max(𝒍−𝑣 , 𝒍+𝑣 ) + 𝒍𝑖 > 𝑐 then
10

−→
𝑆 .notBetween(𝑣, 𝒆𝑖 , 𝜔)

11 break
12 𝑣 ← −→𝑆 .getNext(𝑣)

4.3.5 SubSequence

The SubSequence constraint links two sequence variables
−→
𝑆𝑚,
−→
𝑆 𝑠 , ensuring

that a subsequence
−→
𝑆 𝑠 is contained within a super sequence (or master se-

quence)
−→
𝑆𝑚 .

SubSequence(−→𝑆𝑚,
−→
𝑆 𝑠) ↔

(
𝑣𝑖 ∈

−→
𝑆 𝑠 =⇒ 𝑣𝑖 ∈

−→
𝑆𝑚

)
∧(

∀𝑣𝑖 , 𝑣 𝑗 ∈
−→
𝑆 𝑠 : 𝑣𝑖

−→
𝑆 𝑠≺ 𝑣 𝑗 =⇒ 𝑣𝑖

−→
𝑆𝑚≺ 𝑣 𝑗

)
(4.63)
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𝛼 𝑠0 𝑒1 𝜔

𝒍−𝑠0

𝒍−𝑒1

𝒍−𝜔𝒍+𝛼 𝒍+𝑠0

𝒍+𝑒1

𝒍+𝜔𝒍𝛼+1𝛼 𝒍𝑠0+1
𝑠0

𝒍𝑒1+1
𝑒1

0 1 −→
𝑆

Load

2

1

𝛼 𝑠0 𝑒0 𝜔

𝒍−𝑠0

𝒍−𝑒0

𝒍−𝜔𝒍+𝛼 𝒍+𝑠0

𝒍+𝑒0

𝒍+𝜔𝒍𝛼+1𝛼 𝒍𝑠0+1
𝑠0

𝒍𝑒1+1
𝑒1

0 −→
𝑆

Load

2

1

Figure 4.10: Two load profiles for different sequences, assuming a capacity
of 2. At the top, with 𝒍𝑠0+1

𝑠0
= 0, we can detect that an activity of load 2 can

be put between 𝑠0 and 𝑒1. At the bottom, with 𝒍𝑠0+1
𝑠0

= 1, we can detect that no
activity of load 2 can be put between 𝑠0 and 𝑒0.

Filtering Firstly, to ensure that every node 𝑣𝑖 within the subsequence
−→
𝑆 𝑠 is

visited by the master sequence
−→
𝑆𝑚 , implications constraints are used:

R𝑖 (
−→
𝑆 𝑠) =⇒ R𝑖 (

−→
𝑆𝑚) ∀𝑣𝑖 ∈ 𝑉 (4.64)

Where 𝑉 is the set of nodes over which the subsequence
−→
𝑆 𝑠 is defined.

Apart from those implications, the filtering is essentially the same as the

one performed by the Precedence constraint from Section 4.3.3. The partial

sequences
−→𝑠 𝑚, −→𝑠 𝑠 of the two sequences variables

−→
𝑆𝑚,
−→
𝑆 𝑠 are retrieved, and the

filtering ensures that nodes in common to the two partial sequences appear

in the same order:

∀𝑣𝑖 , 𝑣 𝑗 ∈ −→𝑠 𝑠 ∩ −→𝑠 𝑚 : 𝑣𝑖

−→𝑠 𝑠≺ 𝑣 𝑗 ⇐⇒ 𝑣𝑖

−→𝑠 𝑚≺ 𝑣 𝑗 (4.65)

If (4.65) does not hold, a failure is triggered. Then, filtering of detour edges

is performed by calling twice Algorithm 8 from the Precedence constraint.

It is called once with
−→
𝑆 =

−→
𝑆𝑚 and

−→𝑜 = −→𝑠 𝑠 , enforcing precedences from the

partial subsequence
−→𝑠 𝑠 onto the master sequence

−→
𝑆𝑚 , and a second time with

−→
𝑆 =

−→
𝑆 𝑠 and

−→𝑜 = −→𝑠 𝑚 , enforcing precedences from the partial master sequence

−→𝑠 𝑚 onto the subsequence
−→
𝑆 𝑠 .
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4.4 Search

This section presents some basic search procedures and principles used in

conjunction with one or more sequence variables to explore the search space.

4.4.1 Branching

Filtering of the constraints is generally not enough to terminate with fixed

sequences. A search procedure is needed to explore the search space. When

working with sequence variables, this corresponds to iteratively choosing an

unfixed sequence and applying alternative decisions further constraining its

domain, through the use of domain derivation. Once all sequences in the

problem are fixed and the constraints are satisfied, a solution to the problem

has been found.

As shown in the top part of Figure 4.11, different intermediate sequences

can ultimately lead to the same one through different insertion steps. This

symmetry, induced by branching decisions, can cause inefficiencies. Ideally,

we would explore search trees corresponding to disjoint search spaces.

𝑣1𝑣2𝑣3 𝑣1𝑣3𝑣2 𝑣3𝑣1𝑣2 𝑣2𝑣1𝑣3 𝑣2𝑣3𝑣1 𝑣3𝑣2𝑣1

𝑣1𝑣2 𝑣1𝑣3 𝑣3𝑣1 𝑣2𝑣1

𝑣1

𝑣1𝑣2𝑣3 𝑣1𝑣3𝑣2 𝑣3𝑣1𝑣2 𝑣2𝑣1𝑣3 𝑣2𝑣3𝑣1 𝑣3𝑣2𝑣1

𝑣1𝑣2 𝑣2𝑣1

𝑣1

Figure 4.11: Sequences created from a fully connected graph 𝐺 (𝑉 , 𝐸) with
𝑉 = {𝛼, 𝑣1, 𝑣2, 𝑣3, 𝜔}, where all nodes are required (𝑉 = 𝑅). Nodes 𝛼 and 𝜔 are
implicit and not shown. Top: each sequence is extended by inserting any
feasible node at each step. Bottom: a node is first selected for insertion, then
all its feasible positions are considered for insertion before moving to the
next node (first 𝑣1, then 𝑣2, then 𝑣3).

Disjoint search spaces A simple branching strategy that guarantees the

generation of disjoint search spaces is the two-step 𝑛-ary branching:
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1. Node selection: Choose an insertable node 𝑣𝑖 ∈ 𝐼 within a sequence

variable 𝑆𝑞.

2. Node branching: For each possible insertion point for 𝑣𝑖 in 𝑆 , create a

branch inserting 𝑣𝑖 at that position.

The first step is similar to the variable selection used with integer vari-

ables. It allows the integration of first-fail strategies, such as selecting nodes

with the fewest possible insertion points. The second step is conceptually

similar to value selection; therefore, the most promising insertions should be

attempted first. It allows the integration of insertion-based heuristics, such

as selecting the insertion that results in the smallest increase in tour length.

This is best suited when all nodes must be inserted in a sequence in a solution.

As can be observed in the bottom part of Figure 4.11, this strategy gener-

ates only distinct sequences.

Another simple binary branching strategy that offers the same guarantees

is to replace the second step (node branching) with only two branches. An

insertion point is selected, with the insertion performed on the left branch,

while the corresponding notBetween derivation is enforced on the right

branch.

4.4.2 Large Neighborhood Search

The usage of LNSwith sequence variableswas already presented inAlgorithm

4. In the context of VRPs, this algorithm consists of relaxing some tours by

removing nodes from sequences. This approach maintains partial tours, simi-

lar in spirit to the partial-order scheduling method introduced for scheduling

in [GLN05]. It also accurately corresponds to the original LNS presented in

[Sha98], where partial tours are extended through insertions.

The reconstruction phase uses CP and its search capabilities to reinsert

the removed nodes into the restricted problem, possibly within a time limit,

before restarting the process.

The set of nodes to relax can be selected in various ways, such as ran-

domly or with more advanced strategies based on relatedness criteria, such

as geographical proximity or time-based considerations between nodes, as in

[BV04; CV20; Sha98].

4.5 Related work: Previous Insertion Sequence Variables

The preceding sections presented insertion-based sequence variables, their

domain, global constraints and considerations on the search. Now that those

elements have been properly introduced, some previous work may be de-

scribed in depth.
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Previous work has already proposed to introduce insertion-based se-

quence variables in constraint programming. The very first attempt was pro-

posed by Thomas, Kameugne, and Schaus in [TKS20]. It was further described

in the thesis of Thomas [Tho23]. Later on, I continued this work and proposed

a second variation in [DSV22]. The differences between sequence variables

in this thesis and with those previous versions are highlighted next.

4.5.1 First Iteration: The Basis

The first version of insertion-based sequence variables in CP was presented

in [TKS20; Tho23]. Some notable differences with the version presented in

this thesis are the following.

No outgoing edges : instead of maintaining, for each node, both its ingo-

ing and outgoing edges, the first iteration only maintained the ingoing

edges. Insertions were performed by using one directed edge (𝑣1, 𝑣2),
with 𝑣1 ∈ −→𝑠 and 𝑣2 ∈ (𝑉 \ −→𝑠 \ 𝑋 ) instead of detour edges. Further-

more, nodes within the partial sequence had only one ingoing edge:

their immediate predecessor. While this reduces memory consumption

(the number of sparse sets for the edges is halved), it prevents the im-

plementation of some search heuristics, given the limitations in edge

representations (it was for instance harder to choose to insert after a

node 𝑣 ∈ −→𝑠 having the fewest outgoing edges).

Removal of arbitrary edges : edge deletion in the sequence variable pre-

sented so far can only be achieved by removing detour edges. This

previous version allowed to remove edges between insertable nodes.

This may seems worthwhile to allow (there should not be any reason

to keep an edge (𝑣𝑖 , 𝑣 𝑗 ) if no sequence with (𝑣𝑖 ≺ 𝑣 𝑗 ) is a solution) but
was error-prone. Indeed, removing an edge (𝑣𝑖 , 𝑣 𝑗 ) was not sufficient

to forbid sequences where 𝑣𝑖 ≺ 𝑣 𝑗 : it may still be possible to insert first

𝑣𝑖 at the beginning of the sequence and later on insert 𝑣 𝑗 near the end

of the sequence. The user could thus be misled into thinking that edges

encoded precedences, and implement faulty filtering algorithms.

Furthermore, although some edges may never appear in a solution (as-

sume a constraint 𝑐 that forbid edge (𝑣1, 𝑣2) to appear in a sequence),

they may be needed in a partial sequence to reach another sequence

being a solution (𝛼 · 𝑣1 · 𝑣2 · 𝜔 is inconsistent w.r.t. 𝑐 , but this partial

sequence is needed to derive 𝛼 · 𝑣1 · 𝑣3 · 𝑣2 · 𝜔). When implementing a

filtering propagation for 𝑐 , a user may think that removing edge (𝑣1, 𝑣2)
makes sense. However, it should actually be kept, as it allows for de-

riving sequences where 𝑣1 ≺ 𝑣2 ∧ ¬(𝑣1 −→ 𝑣2).
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Non-persistent NotBetween : Currently, an insertion triplet (𝑣1, 𝑣2, 𝑣3) re-
moval through a notBetween prevents from creating a sequence where

𝑣1 ≺ 𝑣2 ≺ 𝑣3. However this previous version did not have this persist-

ing effect: removing an edge (𝑣1, 𝑣2) (which is equivalent to removing

insertion (𝑣1, 𝑣2, getNext(𝑣1)) in the current version) does not forbid

to create a sequence including the related subsequence. This is essen-

tially because no outgoing edges were encoded in the graph, which

prevented the implementation of filtering rules such as (4.23) in the

domain, which is instrumental for keeping encoding forbidden subse-

quences in a graph.

Indirect insertion : an interesting feature in the version proposed in this

thesis is highlighted in (4.29): a node 𝑣 ∉ −→𝑠 outside the partial sequence

without any feasible direct insertion cannot be part of the sequence.

This first version did not ensure this, and a node 𝑣 ∉ −→𝑠 without any

direct insertion at a given state of the domain may be inserted at a later

point.

NP-Completeness . This first iteration also included required nodes. How-

ever, checking if a sequence visiting all required nodes could be ob-

tained (i.e. checking the consistency of the domain) was NP-Complete

according to [TKS20; Tho23], due to arbitrary edge removal and the

need to ensure that nodes may still be connected.

No automated insertion : the current version automatically inserts re-

quired nodes that have only one insertion remaining. However, due

to both indirect insertions and non-persistent NotBetween in the pre-

vious iteration, the order in which nodes were inserted mattered: some

sequences could only be constructed by a particular list of insertions.

One example could be that, starting from
−→𝑠 = 𝛼 · 𝜔 , the sequence

−→𝑠 ′ = 𝛼 · 𝑣1 · 𝑣2𝜔 may only be obtained by inserting first 𝑣2 and then

𝑣1, and not by inserting 𝑣1 and then 𝑣2. This is equivalent to removing

some transitions from the top of Figure 4.11, while still having all leaf

nodes reachable from the root node of the search tree. This made au-

tomated insertions impractical, as this particular list of insertions was

not trivial to compute on large sequences.

Stronger filtering : some filtering algorithms for the constraints enforced

a stronger consistency than the relaxed-insert consistency. This was for
instance the case on the TransitionTimes constraint, which attempted

to ensure that a sequence linking all required insertable nodes could be

constructed. But the time complexity needed by this heavier filtering

hindered the performance on some problems.
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No boolean variables for required nodes : as the name suggest, there

were no boolean variables telling if a node is required. While this

could have been easily implemented in this first iteration (the spars

set acting as a tripartition [Sai+13], and used to create the boolean

variables, was already present), its absence forced to implement cus-

tom constraints for simple logical operation, such as forcing a set

𝐷 of nodes to be visited together. This corresponds to the relation

∀𝑣𝑖 , 𝑣 𝑗 ∈ 𝐷 : R𝑣𝑖 (
−→
𝑆 ) = R𝑣𝑗 (

−→
𝑆 ) and is enforced with existing sum con-

straints over boolean variables in our case. However, it was enforced

through a Dependence constraint, specific to sequence variables.

Clique of non-insertable nodes : in some cases, a partial sequence may

not be extended further (i.e. no insertion remains), yet some edges out-

side the partial sequence subsisted (connecting nodes that were both

outside of the partial sequence but not excluded). In those cases, the

sequence domain was not considered as fixed due to those edges. This

situation was problematic depending on the problem at hand. If the

problem is required to visit all nodes, this situation corresponds to an

inconsistency, and backtracking should occur. In other problems where

visits may be omitted, it instead corresponds to a solution. Those situ-

ations were detected and handled by custom search procedures, which

complicated the implementation of search heuristics.

4.5.2 Second Iteration: Lighter Implementation

The first version introduced a significant complexity due to the required

nodes and the heavy filtering proposed. A second iteration introduced the

following changes compared to the first iteration. It was published in A.

Delecluse, P. Schaus, and P. Van Hentenryck. “Sequence Variables for Rout-

ing Problems”. In: 28th International Conference on Principles and Practice of
Constraint Programming (CP 2022). Schloss Dagstuhl-Leibniz-Zentrum für In-

formatik. 2022

No required nodes : which reduces both the expressiveness but also the

complexity of the sequence domain. This is similar to working with a

required-relaxed sequence domain introduced in Definition 4.3.2. Forc-

ing a node to be required in a sequence could still be achieved by adding

a constraint that fails whenever the node is excluded. However, nodes

put as required with such constraints were not marked in the domain,

and could not be retrieved through domain queries.

Lighter filterings : filtering rules proposed in the paper were much simpler

as they did not take into account the required nodes. This is equivalent

to only consider relaxed-insert consistency.
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Insertion counters : this second iteration introduced the insertion counters

𝑛𝐼𝑣 for every node 𝑣 ∈ 𝑉 , absent in the first iteration, which were useful
to implement search heuristics efficiently.

Although less expressive, this second iteration performed better than the

first on some problems in terms of speed to reach a given solution quality.

Notably, the performance on the DARP was better, and new best solutions

were found on the classical instances of the Traveling Salesman Problemwith

Time Windows (TSPTW).

4.5.3 Summary of the Differences

A summary of the key differences between the versions of insertion-based se-

quence variables is presented in Table 4.6. The third version refers to the one

presented in this thesis and to be published in A. Delecluse, P. Schaus, and

P. Van Hentenryck. “Sequence Variables: A Constraint Programming Com-

putational Domain for Routing and Sequencing”. Manuscript in preparation.

2025.

Feature 1st version
[TKS20; Tho23]

2nd version
[DSV22]

3rd version
[DSV25]

Required nodes ✓ ✓
Required nodes as boolean variables ✓
NP-Complete domain consistency ✓
Outgoing edges exposed ✓
Arbitrary edge removal ✓ ✓
Persistent notBetween ✓
Automated insertions ✓
Insertion counters ✓ ✓

Table 4.6: Major differences between versions of sequence variables.

Some differences in terms of search tree exploration with a sequence ap-

plied on 𝑉 = {𝛼,𝜔, 𝑣1, 𝑣2} are highlighted in Figure 4.12 (sequences from

[TS18; DSV22]) and in Figure 4.13 ([DSV25]). Node expansions in both search

trees are obtained through derivations as similar as possible, given that the

implementations and operations slightly differ.

More nodes in the search tree are considered with [TS18; DSV22] in Fig-

ure 4.12, some of which correspond to the same state. Nodes without any

direct insertions (node 𝑣1 in state C) may still be inserted at a later point

(state J). Moreover, removing an edge (𝛼, 𝑣1) at the root (the equivalent of a
notBetween(𝛼, 𝑣1, 𝜔) in this version) still allows obtaining a sequence with
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𝛼 𝜔

𝑣1 𝑣2

𝛼 𝜔

𝑣1 𝑣2

𝛼 𝜔

𝑣1 𝑣2

𝛼 𝜔

𝑣1 𝑣2

𝛼 𝜔

𝑣1 𝑣2

𝛼 𝜔

𝑣1 𝑣2

𝛼 𝜔

𝑣1 𝑣2

𝛼 𝜔

𝑣1 𝑣2

𝛼 𝜔

𝑣1 𝑣2

𝛼 𝜔

𝑣1 𝑣2

𝛼 𝜔

𝑣1 𝑣2

A

B C

D E F G

H I J K

(𝛼, 𝑣1) ¬(𝛼, 𝑣1)

(𝛼, 𝑣2) ¬(𝛼, 𝑣2)

(𝑣1, 𝑣2) ¬(𝑣1, 𝑣2)

(𝛼, 𝑣2) ¬(𝛼, 𝑣2)

(𝑣2, 𝑣1) ¬(𝑣2, 𝑣1)

Figure 4.12: Search tree exploration with previous sequence variables
[TKS20; DSV22]. (𝑣𝑖 , 𝑣 𝑗 ) denotes an insertion of 𝑣 𝑗 after 𝑣𝑖 , and ¬(𝑣𝑖 , 𝑣 𝑗 ) the
removal of the corresponding insertion. Nodes D and J in the search tree
correspond to the same state (and same solution). Node G has no node in-
sertable even though edges outside the partial sequence remain. Finally, in
node J 𝛼 ≺ 𝑣1 even though one of its ancestors (node C) was obtained by
¬(𝛼, 𝑣1).

𝛼 ≺ 𝑣1 ≺ 𝜔 . This happens because removing the edge (𝛼, 𝑣1) is not equiv-
alent to the negation of performing an insertion (𝛼, 𝑣1). Finally, a clique of

nodes outside the partial path may remain, even though none of the node can

be inserted (state G). In contrast, none of those problems is present in Figure

4.13.

The problem of reaching twice the same solution (nodes D and J in Fig-

ure 4.12) in [TS18; DSV22] could be mitigated by only performing insertions

during the search exploration, instead of performing both insertions and not-

Between. This effectively explores each solution once. The drawback is the

limitation in search procedure expressiveness.
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𝛼 𝜔

𝑣1 𝑣2

𝛼 𝜔

𝑣1 𝑣2

𝛼 𝜔

𝑣1 𝑣2

𝛼 𝜔

𝑣1 𝑣2

𝛼 𝜔

𝑣1 𝑣2

𝛼 𝜔

𝑣1 𝑣2

𝛼 𝜔

𝑣1 𝑣2

𝛼 𝜔

𝑣1 𝑣2

𝛼 𝜔

𝑣1 𝑣2

A

B C

D E F G

H I

(𝛼, 𝑣1, 𝜔) ¬(𝛼, 𝑣1, 𝜔)

(𝛼, 𝑣2, 𝑣1) ¬(𝛼, 𝑣2, 𝑣1)

(𝑣1, 𝑣2, 𝜔) ¬(𝑣1, 𝑣2, 𝜔)

(𝛼, 𝑣2, 𝜔) ¬(𝛼, 𝑣2, 𝜔)

Figure 4.13: Search tree exploration with current sequence vari-
ables [DSV25]. (𝑣𝑖 , 𝑣 𝑗 , 𝑣𝑘 ) denotes an insert(𝑣𝑖 , 𝑣 𝑗 ) and ¬(𝑣𝑖 , 𝑣 𝑗 , 𝑣𝑘 ) a
notBetween(𝑣𝑖 , 𝑣 𝑗 , 𝑣𝑘 ). Each node in the search tree corresponds to a dif-
ferent state. Node G has no remaining edges between nodes outside the
partial sequence. No descendant of node C can be obtained such that 𝛼 ≺ 𝑣1.

4.6 Applications

The DARP problem introduced in section 4.1 is first tackled. Then, the Pa-

tient Transportation Problem [Cap+18] is presented, followed by the Travel-

ing Salesman Problem with Time Windows. In all used instances, distances

and travel times are the same. Finally, a non-routing problem is also solved

with sequence variables.

All experiments were conducted using two Intel(R) Xeon(R) CPU E5-

2687W in single-threaded mode or a similar machine. The implementa-

tion was done in Java using the MaxiCP solver [Sch+24], an extension from

MiniCP [MSV21]. Experiments were run in parallel using GNU Parallel

[Tan21].
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4.6.1 Dial-A-Ride Problem

The state-of-the-art for solving the DARP (introduced in section 4.1), to the

best of our knowledge, is the Adaptive LNS proposed by [GD19], combining

the operators proposed by [RP06] (random, worst and Shaw removal with

greedy and regret based insertions) with additional relaxations, exploiting 9

removal and 5 insertion operators in total. Insertions are evaluated based on a

feasibility check specific to the DARP, and obtained solutions close to the best

found so far are further optimized using an adaptation of the neighborhood

proposed in [BS01]. For further readings on the DARP, the reader is referred

to the literature review from [Ho+18].

4.6.1.1 LNS

We use a simple LNS that always relaxes 10 requests chosen randomly and

uses Algorithm 3 for the branching. The request to insert is the one having

the minimum number of insertions, defined as the product of insertions for its

pickup and drop. Insertions having a small increase in tour distance and high

preserved time slacks are considered first, as in [JV11]. When considering an

insertion triplet point (𝑣𝑖 , 𝑣 𝑗 , 𝑣𝑘 ) in vehicle Route𝑘 , the heuristic cost is defined
as:

𝐶1(𝒅𝑖, 𝑗 + 𝒅 𝑗,𝑘 − 𝒅𝑖,𝑘 ) −𝐶2(⌈Time𝑘⌉ − ⌊Time𝑖⌋ − 𝒅𝑖 − 𝒅𝑖, 𝑗 − 𝒅 𝑗 − 𝒅 𝑗,𝑘 ) (4.66)

Where constants𝐶1,𝐶2 control the importance of the detour cost and the

preserved time slack, respectively. The heuristic cost for inserting a request

𝒓𝑖 ∈ 𝑅 is the sum of cost for inserting its pickup 𝒊+ and drop 𝒊− . Values for
𝐶1,𝐶2 were taken from [JV11] and set to 80 and 1, respectively.

In cases where a request has a node already being inserted (for instance a

node that was automatically inserted), this request is selected in priority and

its remaining node is inserted.

We compare the sequence variable approach with other approaches suit-

able for modeling VRPs:

■ A successor model written in Minizinc [Net+07] and run with the

Gecode solver [SLT06], which performed best across all Minizinc back-

ends. The underlying CP model is essentially the same as in [BPR11].

Both exhaustive search (Succ) and LNS (Succ-LNS) are reported.

■ OrTools and its routing library, which relies on local search [PFa]. All

combinations of first solution strategy and local search meta heuristics

in the solver have been tried, and we report the best overall configura-

tion.
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■ Hexaly, a commercial solver specialized in routing [24b], using a

model provided by the Hexaly team.

■ CP Optimizer (CPO), a commercial scheduling solver, whose model

is written using head-tail sequence variables [Lab+18a; Lab+18b].

This list voluntary omits the state-of-the-art methods on the DARP, de-

scribed earlier. Such methods are specialized towards the DARP only, and

cannot be directly adapted to cope with other kinds of VRPs, compared to the

present list, where the models can be adapted in a declarative fashion. Nev-

ertheless, we do report the best known solutions found by such methods in

our experiments.

The results on the instances from [CL03] are described in Table 4.7. Each

approach was run 10 times in single-threaded mode for 15 minutes, using

different random seed, and the average and minimum gap are reported. The

approach using sequence variable, although relying on a simple LNS, is con-

sistently within 15% of the best known solutions. Only the approach using

Hexaly and sequence variables manage to find feasible solutions to all in-

stances. This is still far from the state-of-the-art [GD19], but more adaptable

to other VRP variants.

4.6.1.2 Exact Search

On small DARP instances, it is possible to explore the entire search space.

This experiment attempts to evaluate the search statistics when enumerating

all solutions to an instance.

We first describe in Algorithm 10 an alternative to Algorithm 3 for gener-

ating branching decisions. Given a request 𝑟𝑖 to insert, it generates all relevant

insertion points for it. To do so, the pickup 𝒓+𝒊 is first inserted in a vehicle 𝑘 ,

and a fixpoint computation is run (lines 6 and 7). If successful, the fixpoint

has filtered out insertions for the drop 𝒓−𝒊 , which are used to create the final

branching points that will be considered, inserting both nodes 𝒓+𝒊 , 𝒓
−
𝒊 compos-

ing the request (lines 9 to 11). All those operations are surrounded by save

and restore operations, similarly to BIVS [FP17]. The branching points cre-

ated in this manner are also sorted by heuristic (4.66). In some cases, inserting

the pickup 𝒓+𝒊 is sufficient to force the insertion of the drop 𝒓−𝒊 (for instance

when inserting into in an empty route: the pickup and drop will necessarily

be consecutive due to precedence constraints), which needs to be considered

as a branching point as well (line 13).

We compare the following approaches, with the following abbreviations:

■ Seq22: the previous version of sequence variables [DSV22], which used
Algorithm 10 for its branching (line 13 was absent in this approach,

given that no insertion was automatically performed).
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Algorithm 10: Enhanced creation of the branching points for the

DARP.

Input: 𝑟𝑖 : request to insert

1 branches← {}
2 for 𝑘 ∈ 𝐾 do
3 𝐼+ ← Route𝑘 .getInsert(𝒓+𝒊 )
4 for 𝑝+ ∈ 𝐼+ do
5 saveState()
6 Route𝑘 .insert(𝑝+, 𝒓+𝒊 )
7 success← fixpoint()
8 if success then
9 𝐼− ← Route𝑘 .getInsert(𝒓−𝒊 )

10 for 𝑝− ∈ 𝐼− do
11 branches← branches ∪{

(Route𝑘 .insert(𝑝+, 𝒓+𝒊 ) ∧ Route𝑘 .insert(𝑝−, 𝒓−𝒊 ))
}

12 if 𝐼− = ∅ then
// 𝒓−𝒊 was automatically inserted

13 branches← branches ∪
{
Route𝑘 .insert(𝑝+, 𝒓+𝒊 )

}
14 restoreState()
15 sort branches by increasing order of heuristic cost

16 return branches

■ LNS-FFPA: the search from Jain and Van Hentenryck for the DARP

[JV11]. This approach is faster than previous sequence version

[DSV22], also based on CP, and uses insertions of requests for extend-

ing the paths, without sequence variables. An insertion of a node 𝑣2

between node 𝑣1 and 𝑣3 is enforced by adding constraints on the time

windows, in the form Time1 + 𝒔1 + 𝒅1,2 < Time2, and by modifying

a chain of successors represented with reversible integers instead of

integer variables (i.e. it does not rely on a successor model with a cir-

cuit constraint). Insertions for a request are generated by simulating

the insertion of one of the nodes, and computing candidate insertion

points for the remaining node. This is similar to Algorithm 10, but

the implementation was much more complex due to the absence of se-

quence variables maintaining insertion points. For a fair comparison,

we have implemented the COMET source code provided by the authors

of [JV11] in Java. Note that this approach shares some similarities with

the approach from [GD19], where insertion points for requests are also

generated and evaluated on the fly, given the current partial paths.

■ Thesis, which uses sequence variables from this thesis. In particular,
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insertion of requests are evaluated with both Algorithm 3 and 10.

We also introduce two other search procedures, considering the inser-

tion of a single node instead of a request. The node selected is the one

having the fewest insertions, prioritizing nodes being required and not

yet inserted. Given this node to insert, twoways of exploring the search

space are considered:

– Node (𝑛) generates𝑛 branches for the node: one for each insertion
point in each vehicle. Branches are explored in increasing order

of heuristic (4.66).

– Node (2) generates 2 branches for the node: the left branch at-

tempts to insert the node at the best insertion according to (4.66),

and the right branch removes such insertion with a corresponding

notBetween operation. Note that this search would have gener-

ated duplicate solutions with previous sequence variables [TKS20;

DSV22], as illustrated previously in Figure 4.12.

Results are reported in Table 4.8 for an instance with 2 vehicles and 20

requests. Several points are worth highlighting. Generating branches with

Algorithm 10 instead of Algorithm 3 leads to a smaller search tree and three

times fewer failures, but is slower as more fixpoint computations occur. The

previous version of sequence variables [DSV22] is dominated in all aspects

by this version when using the same search strategy (Algorithm 10). Inter-

estingly enough, fewer failures occur when branching on nodes instead of

requests (except when compared with Algorithm 10 and this version of se-

quences). Generating 𝑛 branches for inserting a node produces less explo-

ration in the search tree compared to the binary branching, and is the fastest

approach. That being said, when examining the first solutions obtained by

branching on nodes, their objective value was larger than the ones obtained

by branching on requests, even guided with heuristic cost (4.66). This is sim-

ply explained by the fact that the heuristic is guided by more information

(computation on 2 nodes) when considering requests, therefore producing

quickly more valuable solutions. Finally, in terms of speed, the new version

of sequence variables is now on par with the speed obtained with LNS-FFPA

[JV11], even being slightly faster depending on the search strategy, which

was not the case with the previous version [DSV22].

4.6.2 Patient Transportation Problem

This problem, introduced in [Cap+18] and studied in depth in [Tho23], is an

extension of the Dial-A-Ride problem introduced in Section 4.6.1 with a few

additional constraints. It considers the transport of patients to a hospital (de-

scribed as one activity) and possibly back to a given location (another activity)
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Method Time (s) Nodes Failures Solutions

LNS-FFPA [JV11] 974.545 153 864 380 70 033 356 66 700 800
Seq22 [DSV22] 1307.447 120 593 739 35 751 093 66 700 800

Algorithm 3 897.255 123 018 976 39 472 347 66 700 800
Algorithm 10 1170.054 96 518 288 12 863 981 66 700 800
Node (𝑛) 885.344 139 173 098 20 645 264 66 700 800
Node (2) 936.781 175 965 306 21 281 854 66 700 800

Table 4.8: Statistics for finding all feasible solutions on an instance with 2
vehicles and 20 requests. No LNS was used, and no objective tightening was
performed.

by using a limited number of vehicles. The trip to the hospital must therefore

always occur before the return trip and some patients can only be transported

in a particular type of vehicle (patients inwheelchairs for instance). Time dur-

ing which vehicles are available are constrained by time windows availability

(a vehicle may for instance be available between 08h00 until 12h00, and be-

tween 14h00 until 18h00). The objective consists inmaximizing the number of

transported patients. The problem is illustrated in Figure 4.14, adapted from

[Tho23].

4.6.2.1 Model and Search

The model is essentially the same as the DARP (4.1)-(4.7), where one vehicle

corresponds to one sequence variable. The modifications to the DARP are as

follows. The objective consists instead of maximizing the number of serviced

patients, which is retrieved through the boolean variables telling if a node is

visited. A patient is considered visited if the first node related to it (i.e. its
pickup location) is visited by a vehicle. Equality constraints over the visits of

nodes ensure that all nodes related to a patient (2 nodes for a simple trip, 4 if

a backward trip is also present) are always visited together. For cases where

a particular patient 𝑝 can only be transported in a given type of vehicle 𝑡 ,

node exclusion occurs for every node related to 𝑝 from sequence variables

whose related vehicle type is different from 𝑡 . Lastly, the patient may ask

that its return trip is performed by the same vehicle, which is enforced by a

precedence constraint over all nodes related to the patient.

Finally, for taking into account the time during which vehicles are avail-

able, a modeling trick is used. Two nodes per timewindow availability of each

vehicle are introduced, corresponding to times at which the vehicle must be

stationed at its depot: the start and end of each time window availability.

Those nodes are directly inserted, in the order of the time windows avail-
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B

B

(1) pick A

(2) drop A

(3) pick B

(4) pick A

(5) drop A

(6) drop B

(7) pick B

(8) drop B

(9) return to depot

Figure 4.14: Instance for the PTP (top) and one possible solution (bottom).
The Number in parentheses indicates the order in which operations are per-
formed. Each patient (A and B) is picked twice and dropped twice: once for
its trip to the hospital, and once for its return trip home.

ability, within the sequence variable of their corresponding vehicle. Finally,

a "fake" activity with a load equal to the capacity of the vehicle is introduced

between the end node of a time window availability and the start node of

the subsequent time window. Combined with the cumulative constraint, this

"fake" activity ensures that (i) no patient may be visited outside the availabil-

ity, and that (ii) no patient may stay in the vehicle outside the availability.

Regarding the other constraints in the model, those introduced nodes are du-

plicates of the depot, and their time windows for the TransitionTimes con-

straint correspond to their time window availability.

Example 4.6.1. Consider a vehicle having two time windows availability:

[8h00-12h00] and [14h00-18h00]. Four nodes are introduced: 𝑠0, 𝑒0 correspond



110 Chapter 4. Sequence Variables

to the start and end of the first time window, and 𝑠1, 𝑒1 to the second (and last)

time window. The sequence variable
−→
𝑆 representing the vehicle is initialized

with 𝛼 = 𝑠0 and𝜔 = 𝑒1. Then, the other nodes 𝑒0, 𝑠1 corresponding to the time

windows are inserted in order, giving the partial sequence
−→𝑠 = 𝑠0 · 𝑒0 · 𝑠1 · 𝑒1.

An activity for the cumulative constraint is introduced, with start 𝑒0, end

𝑠1 and load being the vehicle capacity. Due to the load of this activity, the

cumulative constraint ensures that no node may be visited between 𝑒0 ·𝑠1 and

that no patient picked between 𝑠0 ·𝑒0 may be dropped after 𝑠1. Lastly, for each

introduced node, the time windows for the TransitionTimes corresponds to

the availability: Time𝑠0
∈ [8h00-12h00],Time𝑒0

∈ [8h00-12h00],Time𝑠1
∈

[14h00-18h00],Time𝑒1
∈ [14h00-18h00].

An alternative to this modeling trick would have been to introduce one

sequence variable per time window availability, for each vehicle. This cor-

responds to a vehicle duplication, as originally proposed in [Cap+18]. Com-

pared to the presented modeling trick, this consumes more memory. More-

over, it complicates the integration of constraints related to the return trip: if

the patient needs to have a return trip back home by the same vehicle, it im-

plies that the nodes related to the return trip must be required by exactly one

other sequence corresponding to the same vehicle. This needs to be captured

by several sum constraints. In contrast, the return trip by the same vehicle

are handled with only one precedence constraint through this modeling trick.

Regarding the search, it selects the non-inserted patient having the fewest

number of insertions, summed over all nodes related to the patient. Patients

with required nodes are selected in priority. Then, the node to insert from the

patient is the one having the smallest number of insertions. Two branches are

generated for this node: one inserting the node at its best insertion place using

cost (4.66), and one removing the insertion through a notBetween. LNS is

used, whose relaxation selects several patients and removes all nodes related

to them.

4.6.2.2 Computational Results

We compare the sequence variable approach with the following

■ SCHED+MSS: the best model reported in [Cap+18], based on CP.

■ ISEQ+SDS: the results reported in [Tho23]. This method relies on the

first iteration of sequence variables.

■ LIU_CPO: the model proposed in [LAB18], relying on CP Optimizer

and its sequence variables.
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Results for those approaches are retrieved from [Tho23]. We use the same

experimental setting for our own approach, using a timeout of 10 minutes and

reporting the best results across 10 runs. Instances are available on CSPLib

[24a].

Table 4.9 presents the results between the sequence variables approach

and the other methods. The sequence variable approach clearly outperforms

all other methods, and reach the best solutions on all but two instances. The

difference in obtained solutions is more pronounced on the largest instances.

In fact, for some instances, comparable solutions found by other models in 10

minutes are reached within a few seconds with the proposed method. This

is the case on RAND-H-10: a solution of value 84, better than previous best

solutions, is already obtained in about 10 seconds, and is further optimized

afterward.

It is worth noting that some obtained solutions were better than optimal

solutions reported in [Tho23]. However, the solution checker provided on

CSPLib [24a] confirmed that those obtained solutions were both feasible and

of better objective value than the ones found in [Tho23]. This suggests that

their model may have been faulty, and wrongly indicated that optimal solu-

tions were reached.

4.6.3 Traveling Salesman ProblemWith Time Windows

The Traveling Salesman Problem with Time Windows (TSPTW) is an exten-

sion of the TSP which adds time windows to the visit of nodes. Even finding

a feasible tour for the TSPTW is NP complete [Sav85]. Therefore, two main

settings are considered. The first one considers the feasibility problem, and

attempts to find a feasible TSPTW tour as fast as possible. The second one

considers the optimization problem, and optimizes an initial solution pro-

vided with LNS.

A previous version of sequence variables improved 32 best-known solu-

tions on the classical TSPTW benchmark [Lóp20]. Those results were pre-

sented in A. Delecluse, P. Schaus, and P. Van Hentenryck. “Sequence Vari-

ables for Routing Problems”. In: 28th International Conference on Principles
and Practice of Constraint Programming (CP 2022). Schloss Dagstuhl-Leibniz-
Zentrum für Informatik. 2022.

After this publication, a model aimed at finding initial solutions to the

TSPTW was presented in A. Delecluse, P. Schaus, and P. Van Hentenryck.

“SEQUOIA: SEQuence-variable-based Optimization In Action for the Travel-

ing Salesman Problem with Time Windows”. In: Doctoral Program of CP23.
2023.

Both of those publications were using a previous version of sequence vari-

ables [DSV22]. The results presented in this section use the same strategy, but
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Instances LIU SCHED ISEQ Thesis

Set Name |𝐻 | |𝑉 | |𝑅 | _CPO +MSS +SDS [DSV25]

Easy RAND-E-1 4 2 16 15 15 15 15
Easy RAND-E-2 8 4 32 32 32 32 32
Easy RAND-E-3 12 5 48 28 28 28 28
Easy RAND-E-4 16 6 64 64 62 64 64
Easy RAND-E-5 20 8 80 79 75 80 80
Easy RAND-E-6 24 9 96 96 94 96 96
Easy RAND-E-7 28 10 112 112 106 112 111

Easy RAND-E-8 32 12 128 128 128 128 128
Easy RAND-E-9 36 14 144 144 142 144 144
Easy RAND-E-10 40 16 160 159 157 160 160
Medium RAND-M-1 8 2 16 12 11 12 12
Medium RAND-M-2 16 3 32 20 20 20 20
Medium RAND-M-3 24 4 48 35 33 35 35
Medium RAND-M-4 32 4 64 41 39 42 42
Medium RAND-M-5 40 5 80 69 59 67 68

Medium RAND-M-6 48 5 96 60 51 61 61
Medium RAND-M-7 56 6 112 75 62 75 75
Medium RAND-M-8 64 8 128 96 84 95 97
Medium RAND-M-9 72 8 144 94 82 99 101
Medium RAND-M-10 80 9 160 112 100 117 120
Hard RAND-H-1 16 2 16 8 8 7 8
Hard RAND-H-2 32 3 32 19 19 19 19
Hard RAND-H-3 48 4 48 34 32 34 35
Hard RAND-H-4 64 4 64 25 24 24 25
Hard RAND-H-5 80 5 80 48 45 48 50
Hard RAND-H-6 96 5 96 47 41 45 48
Hard RAND-H-7 112 6 112 41 40 44 44
Hard RAND-H-8 128 8 128 86 78 89 90
Hard RAND-H-9 144 8 144 83 75 84 90
Hard RAND-H-10 160 8 160 79 73 83 89

Table 4.9: Best solutions obtained with each method on the PTP. |𝐻 |, |𝑉 | and
|𝑅 | refers to the number of hospitals, vehicles and transportation requests
(i.e. patients), respectively. Best results are shown in bold.

with the new variables presented in this chapter.

The classical benchmark instances from [Lóp20] are used in the exper-

iments. They are split over six datasets, where the number of nodes in the

instances varies up to 232:

AFG includes 50 instances, proposed in [Asc96].

Dumas contains 135 instances, introduced in [Dum+95].

GendreauDumasExtended has 130 instances, presented in [Gen+98].
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They were constructed based on the instances from the Dumas dataset

[Dum+95].

OhlmannThomas inludes 25 instances, proposed in [OT07].

SolomonPesant contains 27 instances [Pes+98], derived from a vehicle

routing problem [Sol87].

SolomonPotvinBengio has 30 instances [PB96], also derived from [Sol87]

but different from the ones belonging to the SolomonPesant dataset.

4.6.3.1 Feasibility

We strive to identify a feasible path for the TSPTW. To do so, we use the

following model.

max

∑︁
𝑣∈𝑉
R𝑣 (Route) (4.67)

subject to:

TransitionTimes(Route, (Time), 𝒔, 𝒅) (4.68)

We convert the satisfaction problem into an optimization problem (4.67)

by relaxing the constraint of visiting all nodes, maximizing the number of

nodes visited, and satisfying the time window constraints for the ones being

visited (4.68). Initially, we employ a greedy approach to construct a tour that

attempts to visit as many customers as possible within their time windows,

using a regret-based heuristic. If some nodes remain not visited in this first

step, we then proceed to the second step, which involves an LNS method.

Starting from the partial path obtained in the first step, the LNS aims to max-

imize the number of visited nodes until a path encompassing every node is

established. This proposed approach is described as SEQUOIA - Sequence

Variable based optimization in action for the TSPTW.

A regret-based heuristic is employed during the greedy search, continuing

with insertions in the sequence until no further additions can be made. This

results in a partial sequence of visits, which ideally encompasses a majority

of the nodes.

Given a node 𝑣 ∈ 𝑉 to insert, the regret of 𝑣 is defined as the difference

between the two smallest costs 𝑐 (i.e., the best alternatives according to (4.66))
based on its insertions. The regret is commonly used to guide problem-solving

[TC72; PR93]. The regret calculation for our problem is described next.
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regret(−→𝑆 , 𝑣, 𝑐) = 𝑐 (𝑝2(𝑣), 𝑣,
−→
𝑆 .getNext(𝑝2(𝑣))) − 𝑐 (𝑝1(𝑣), 𝑣,

−→
𝑆 .getNext(𝑝1(𝑣)))

(4.69)

𝑝1(𝑣) = argmin

𝑝∈−→𝑆 .getInsert(𝑣)
𝑐 (𝑝, 𝑣, −→𝑆 .getNext(𝑝)) (4.70)

𝑝2(𝑣) = argmin

𝑝∈−→𝑆 .getInsert(𝑣),𝑝≠𝑝1 (𝑣)
𝑐 (𝑝, 𝑣, −→𝑆 .getNext(𝑝)) (4.71)

If no valid predecessor can be derived from either (4.70) or (4.71), the cor-

responding term in (4.69) is replaced by a large constant. The regret is used

to expand a path, one node at a time, until it can no longer be extended.

Figure 4.15 shows how many nodes are visited after the first step, that

is the regret-based greedy search. The smallest percentage of visited nodes

66.6% was found on an instance with 60 nodes. On 69 instances, the greedy

search was able to find a feasible path, preventing the need to use an LNS.

We can observe that the difficulty of finding a feasible path changes between

datasets and cannot be expressed through the number of nodes only.
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Figure 4.15: Percentage of nodes visited in the path constructed by the greedy
search. The left figure shows the observed percentage as a SinaPlot [Sid+18],
representing individual observations over the instances as dots, as well as
density estimates. The instances datasets are highlighted by colors.

We evaluated SEQUOIA against two local search approaches: VNS [dU10]

and ImaxLNS [Pra23], as well as against a dynamic programming approach
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- CABS [KB23; Zha98]. Figure 4.16 illustrates the discrepancies in execution

time among the techniques, using 100 runs per instance. A timeout was set

to 3 minutes. SEQUOIA is dominated by ImaxLNS, the state-of-the-art, and

is slower on all instances. It is slightly behind CABS, and offers performance

comparable to VNS. Even in instances where our method lags, the average ex-

ecution time remains under 10 seconds, while the last 2 mentioned techniques

can take several minutes or even experience a timeout on some instances.
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Figure 4.16: Comparison of the execution time between our approach (SE-
QUOIA) and VNS (left), CABS (middle) and ImaxLNS (right). Each dot corre-
sponds to the mean run time on 100 experiments to find a feasible solution
on one given instance. The instances datasets are highlighted by colors. The
diagonal indicates that the two approaches need an equal amount of time.
A dot above the diagonal means that SEQUOIA was faster. A cross indicates
that a least 1 out of the 100 runs resulted in a timeout, assigning the corre-
sponding execution time of the run to the value of the timeout.

4.6.3.2 Optimization

The optimization model is as follows:

minDist (4.72)
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subject to:

TransitionTimes(Route, (Time), 𝒔, 𝒅) (4.73)

Distance(Route, 𝒅,Dist) (4.74)

R𝑣 (Route) = 1 ∀𝑣 ∈ 𝑉 (4.75)

The objective consists in minimizing the traveled distance (4.72), captured

with a Distance constraint (4.74). Visits during time windows are enforced

with (4.73), and the visit of every node 𝑣 ∈ 𝑉 is required (4.75).

Interestingly enough, forcing all nodes to be required (4.75) may already

extend the initial sequence, by inserting nodes having only one insertion

point. Several insertions may be performed automatically with this behav-

ior: a first insertion occurs, then filtering from the initial time windows may

leave only one insertion for a node, which also insert it. Even though the se-

quence variable obtained after those insertions is unfixed, it serves as a strong

basis for the problem to solve: all feasible solutions are super-sequence of this

first partial sequence. Figure 4.17 reports how many nodes were already vis-

ited simply by adding the constraints (4.73) and (4.75). Even on instances with

200 nodes, partial sequence of more than 60 nodes could be identified. We can

also observe that the largest initial partial sequences are found on the Dumas

dataset, which also has the largest disparity in terms of size for initial partial

sequences.

For the optimization problem, we start from initial solutions retrieved by

[dU10] and optimize them for 5 minutes using LNS. The relaxation strategy

consists in removing several successive nodes.

An important ingredient of the LNS to be successful is the number of

nodes to relax. We reuse the scheme proposed in [JV11] for the DARP that

consists in gradually augmenting the number of relaxed nodes. The complete

LNS is presented in Algorithm 11. It stops when a time limit is reached. In

the algorithm, multiple constants are present. The parameters 𝑛min and 𝑛max
dictate the range of neighborhood sizes, commencing with 𝑛min and progres-

sively expanding until they reach 𝑛max − 𝛿 in the outer loop. The parameter

𝛿 regulates the exploration of a variation window starting at 𝑖 and 𝑛iter con-

trols the number of intensification iterations. The values were set to 𝑛min = 5,

𝛿 = 5, 𝑛iter = 3, 𝑛max = max( |𝑉 |/2 − 𝛿, |𝑉 | − 𝛿). The chosen parameter val-

ues have proven to be effective in practice, although a comprehensive set of

experiments to identify the optimal values has not been conducted.

The relaxed path is optimized by choosing the node with the smallest

number of insertions, and inserting it at all insertion points, evaluated in in-

creasing value of detour cost.

The average gap over time, compared to the best known solutions, are

shown in Figure 4.18. Each instance was run 100 times, its average gap over
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Figure 4.17: Percentage of nodes visited in the partial path simply by adding
the optimization constraints (4.73), (4.75) on the TSPTW. The left figure shows
the observed percentage as a SinaPlot [Sid+18], representing individual ob-
servations over the instances as dots, as well as density estimates. The in-
stances datasets are highlighted by colors.

Algorithm 11: LNS
Input : First path initSol
Output: Solution bestSol minimizing traveled distance

1 bestSol← initSol
2 for 𝑖 ∈ {𝑛min . . . (𝑛max − 𝛿)} do
3 if 𝑖 = 𝑛max − 𝛿 then
4 𝑖 ← 𝑛min
5 for 𝑗 ∈ {0 . . . (𝛿 − 1)} do
6 for 𝑘 ∈ {1 . . . 𝑛iter} do
7 select a node 𝑥 not visited in bestSol, randomly.

8 relax 𝑖 + 𝑗 consecutive nodes
9 sol← optimize(relaxed solution)

10 if solution has been improved then
11 bestSol← sol
12 if time limit then
13 return bestSol
14 return 𝑏𝑒𝑠𝑡𝑆𝑜𝑙
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time was computed based on the runs, and results are aggregated per dataset.

We observe that the gaps come close to zero in a less than 10 seconds, ex-

cept on instances from the OhlmannThomas dataset which may take a few

minutes to optimize.
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Figure 4.18: Average gap over time compared to the best known solutions for
the TSPTW.

A few instances actually had to be discarded in this optimization experi-

ment. Indeed, not all instances from [Lóp20] respect the triangular inequality

in their distance matrix. On some of them, the Distance constraint removed

some insertions detected as too costly, and ended up discarding all feasible so-

lutions to the instances. However, even when the triangular inequality does

not hold, not all feasible solutions are necessarily removed. 38 instances over

the 397 used had to be discarded, even though the majority of instances do

not respect the triangular inequality.

This problem was absent in the feasibility experiment, as it originates

from the Distance constraint, not present in the feasibility model
3
. Ideally, on

instances where the triangular inequality is absent and one wishes to use the

Distance and TransitionTimes constraints, all-pairs shortest paths algorithms

should be performed on the distance matrix, to retrieve a matrix upholding

the triangular inequality. The reader is referred to [Cor+22] for a more com-

plete overview of this class of algorithms.

3
The TransitionTimes constraint also requires the triangular inequality. But in the opti-

mization experiment, the filtering performed by the Distance constraint removed all insertions

for nodes due to too costly detours, whereas the TransitionTimes constraint kept those inser-

tions.
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4.6.4 Prize-Collecting Sequencing Problem

This problem is not a VRP, but is included to show how sequence variables

may be relevant for scheduling problems as well.

The Prize-Collecting Job Sequencing with One Common and Multiple

Secondary Resources (PC-JSOCMSR) is a scheduling problem whose objec-

tive is to maximize the collected reward from executed tasks, subject to mul-

tiple constraints. It was introduced in [HRB18], motivated by the scheduling

of patients requiring particle therapy as a treatment for cancer. The problem

consists of a set of 𝑛 tasks 𝑡𝑖 ∈ 𝑇 , each with a processing duration 𝑑𝑖 and an

associated reward 𝑧𝑖 if executed. Each task requires a global resource as well

as one specific secondary resource 𝑗 ∈ 𝑅, where 𝑅 denotes the set of available

secondary resources. The set of tasks associated with the secondary resource

𝑗 is denoted 𝑇 ( 𝑗). Both the global resource and the secondary resources can

only handle one task at a time: no overlapping of tasks is allowed. Addition-

ally, the execution of a task 𝑡𝑖 is further constrained on its secondary resource:

it includes a pre-processing duration𝑑
𝑝𝑟𝑒

𝑖
and a post-processing duration𝑑

𝑝𝑜𝑠𝑡

𝑖

during which the secondary resource is unavailable. The execution of a task

𝑡𝑖 must be non-preemptive and must occur within one of its 𝜔𝑖 specified time

windows 𝑤𝑖 = {𝑤𝑖𝑘 | 𝑘 = 0, . . . , 𝜔𝑖 − 1}, where 𝑤𝑖𝑘 = [𝑤 start
𝑖𝑘

,𝑤 end
𝑖𝑘
]. The goal

is to maximize the sum of the rewards of the executed tasks.

To simplify the naming, the problem will be abbreviated to the Prize Col-

lecting Scheduling Problem (PCSP) instead of PC-JSOCMSR. An example of

PCSP solution is presented in Figure 4.19.
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Figure 4.19: PCSP solution

The best published approaches for this problem rely onMixed Integer Lin-

ear Programming for exact search, and local search for heuristic approaches

on the largest instances [FS23]. Some other methods, using dynamic pro-

gramming, decision diagram or CP have also been developed in [Hor+21].
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Model Our model for the PCSP is as follows:

min

∑︁
𝑡𝑖 ∈𝑇

𝑧𝑖 · R𝑡𝑖 (
−→
𝐺 ) (4.76)

subject to:

TransitionTimes(−→𝐺 , (Time), 𝒅,𝑶) (4.77)

TransitionTimes(−→𝑅 𝑗 , (Time), 𝒅, 𝑻𝒓) ∀𝑗 ∈ 𝑅 (4.78)

SubSequence(−→𝐺 , −→𝑅 𝑗 ) ∀𝑗 ∈ 𝑅 (4.79)

R𝑡𝑖 (
−→
𝑅 𝑗 ) = R𝑡𝑖 (

−→
𝐺 ) ∀𝑗 ∈ 𝑅 ∀𝑡𝑖 ∈ 𝑇 ( 𝑗) (4.80)

R𝑡𝑖 (
−→
𝑅 𝑗 ) = 0 ∀𝑗 ∈ 𝑅 ∀𝑡𝑖 ∈ (𝑇 \𝑇 ( 𝑗)) (4.81)

One sequence variable is introduced per resource:
−→
𝐺 for the global re-

source and
−→
𝑅 𝑗 for each secondary resource 𝑗 ∈ 𝑅. Their start and end corre-

spond to dummy nodes. The goal consists in maximizing the sum of rewards,

summed over the executed tasks (4.76). Visits within time windows are en-

forced through TransitionTimes constraints, both on the global (4.77) and on

the secondary (4.78) sequences. The time window Time𝑖 of a task 𝑡𝑖 is defined
based on its initial timewindows𝑤𝑖 . Regarding transition times, they are zero

on the global resource (4.77), captured through a matrix𝑂 ∈ Z𝑇×𝑇 whose en-

tries are zero. On the secondary resource, transition times between tasks are

encoded in a matrix 𝑻𝒓 ∈ Z𝑇×𝑇 , whose entries are set to 𝑻𝒓𝑖,𝑖′ = 𝑑𝑝𝑜𝑠𝑡𝑖
+ 𝑑𝑝𝑟𝑒

𝑖′ .

To ensure coherence between the global resource and the secondary ones, a

SubSequence constraint is used (4.79). Executing a task on the global resource

means that it must be executed on its secondary resource as well (4.80). Fi-

nally, tasks cannot be executed on a secondary resource not related to them

(4.81).

Search The search selects a node to insert and generates branches for in-

serting it or excluding it. The selection of the node depends on the current

state of the sequence
−→
𝐺 corresponding to the global resource. If the sequence

−→
𝐺 contains nodes being both insertable and required, one of those nodes

(the one with the fewest insertion points) is selected. Otherwise, insertable

nodes from the secondary resource are considered, selecting the node with

the largest reward.

Given the 𝑛 insertions points for a node 𝑣 , 𝑛 + 1 branching decisions are

created. 𝑛 branches attempt to insert the node at every feasible insertion.

The remaining branch attempts to exclude the node. Branches are sorted

decreasingly according to a heuristic reward. The reward to insert node 𝑣

after its predecessor 𝑝 ∈ −→𝑆 .getInsert() is the number of successors available

for 𝑝: |−→𝑆 .getEdgesFrom(𝑝) |. The reward for excluding the node is instead
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set to a constant 𝑥 . This heuristic favors insertions after nodes having many

successors, which helps to preserve some time slack in the partial sequence

for further insertions.

LNS is used and relaxes successive nodes from the main sequence
−→
𝐺 .

Nodes being relaxed are also removed from their secondary sequence
−→
𝑅 𝑗 . The

LNS scheme is the same as in Algorithm 11, with 𝑛min = 10, 𝛿 = 5, 𝑛iter = 10,

𝑛max = |𝑇 | and a limit of 5000 failures in the search tree exploration. 𝑥 was

arbitrarily set to 3 in the experiments.

4.6.4.1 Computational Results

Table 4.10 presents the comparison between the sequence approach (Seqvar-

LNS) and ILS, using the reported results by the authors [FS23]. Each instance

was run 10 times using different random seeds, a timeout of 15 minutes in our

case, and we report the worst, average and best gap observed. Two datasets

retrieved from [FS23] are compared. The approach with sequence variables

is behind the dedicated ILS approach. Still, average gaps are within 5% of the

best known solutions and are found relatively quickly.

4.7 Discussion

Some limitations of sequence variables are first presented, before discussing

future work worth considering.

4.7.1 Limitations

Forbid consecutive nodes One simple operation with the successor

model, the removal of an invalid direct successor, is harder to perform with

sequence variables. This is due to the fact that removals only occur through

deletions of detour edges, and that some inconsistent links in a partial se-

quence may be needed to derive an extended partial sequence, without edges

violating the constraints. This was already discussed in section 4.5.1, on the

removal of arbitrary edges.

Memory consumption On a problem with 𝑛 nodes and 𝑘 vehicles, the

space complexity is O(𝑘𝑛2). This is notably higher than successor models,

whose space complexity is typically in the order of O(𝑛2). This was sufficient

for all problems presented in this thesis, involving dozens of vehicles and

hundreds of nodes, but additional decomposition techniques may be needed

to upscale to very large instances.
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Seqvar-LNS ILS

Gap [%]

Time [s]

Gap [%]

Time [s]

Set |𝑇 | Worst Mean Best Worst Mean Best

A_E

50 1.16 0.90 0.67 64.75 0.01 0.00 0.00 21.70

100 2.29 1.76 1.31 75.54 0.00 0.00 0.00 67.60

150 2.72 2.27 1.82 73.19 0.01 0.01 0.00 116.36

200 3.42 2.99 2.51 105.06 0.03 0.01 0.00 161.82

250 2.78 2.50 2.21 85.72 0.01 0.00 0.00 208.79

300 3.67 3.09 2.52 117.94 0.02 0.01 0.00 254.50

350 2.98 2.64 2.44 120.91 0.01 0.01 0.00 294.06

400 2.98 2.53 2.22 140.32 0.03 0.01 0.00 337.25

450 2.65 2.32 1.97 103.81 0.02 0.01 0.00 379.37

500 3.00 2.71 2.42 112.77 0.06 0.02 0.01 420.74

All 2.76 2.37 2.01 100.00 0.02 0.01 0.00 226.22

T

50 1.53 1.43 1.26 16.91 0.00 0.00 0.00 16.19

100 3.49 2.44 1.59 155.88 0.27 0.18 0.00 59.80

150 5.30 4.10 2.98 123.82 0.76 0.48 0.13 128.88

200 5.69 4.64 3.61 145.12 1.25 0.93 0.47 235.41

250 5.09 4.14 3.28 215.75 0.95 0.70 0.29 366.72

300 5.02 4.05 3.15 309.65 0.61 0.36 0.01 517.49

350 5.24 4.34 3.40 417.21 0.55 0.33 0.00 676.91

400 5.75 4.81 3.87 516.72 0.49 0.29 0.00 859.58

450 5.76 4.86 3.97 608.63 0.47 0.28 0.00 1065.05

500 6.25 5.38 4.50 670.55 0.48 0.28 0.00 1282.29

All 4.91 4.02 3.16 318.02 0.58 0.38 0.09 520.83

Table 4.10: Comparison between ILS and sequence variables on the PCSP.
The gap between obtained solutions and best known solutions are given in
percentages. The time is given in seconds and corresponds to the average
time after which no subsequent solutions were found.

Forbidden subsequences only defined over the partial sequence As

presented in section 4.2.1, a forbidden subsequence (𝑣1, 𝑣2, 𝑣3) may only be

added if both its endpoints (𝑣1 and 𝑣3) are within the partial sequence. This

means that some forbidden subsequences may only be added at a given state

of the domain, but it is the price to pay to have a reasonable memory con-

sumption.

4.7.2 Future Work

4.7.2.1 Stronger Filtering

The filtering algorithms presented in Section 4.3 are relatively simple. Some

of them could easily be enhanced by adding some reasoning commonly found

in dedicated approaches.

For instance, the computation of the lower bound of the Distance con-

straint in Algorithm 7 is based on the current partial sequence, and does not
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take into account that some nodes may be required. An estimation of the

distance if such nodes were included could be obtained through a minimum

spanning tree computation (or even better, through a 1-tree computation).

Such computation could produce better lower bounds.

Similarly, the TransitionTimes filtering could benefit from existing algo-

rithms on scheduling with optional tasks. For instance, it would be worth

investigating the incorporation of the algorithms presented in Vilim’s the-

sis [Vil07], where filtering for disjunctive constraints with optional tasks are

presented. Those algorithms can be modified to take into account transition

times between elements, as shown in [Van+16; DVS15]. Efficiently incor-

porating these algorithms in the TransitionTimes filtering, while scaling to

hundreds or thousands of nodes, remains to be studied.

In any case, one should remember that some of the increase in perfor-

mance between the first [TS18] and second iteration [DSV22] of sequence

variables were due to lighter filtering introduced. Therefore, introducing

heavy computation within the filtering algorithms should be considered with

caution, and be empirically validated.

4.7.2.2 Reducing Memory Consumption

Memory consumption may be a significant issue on problems with many

nodes and sequence variables. Here is a non-exhaustive list of changes that

may be considered to tackle large problems.

■ Storing the edges between nodes may be implemented by using a re-

versible sparse bit-set, similar to the one used in [Dem+16], compared

to using a sparse set as in [Sai+13]. Edge deletion would occur by set-

ting a corresponding bit to false in the sparse bit-set. This would lower

the memory representation at first (fewer array entries are needed) but

storesmore reversible values on the trail (eachwordwithin the bit-set is

a reversible value, compared to only one reversible integer in [Sai+13]).

■ A significant way of heavily reducing memory consumption with sev-

eral sequence variables would be to use an approach similar to CP Op-

timizer for its own sequence variables [Lab+18b; Lab+18a]. Nodes in

the problem would be created outside any sequence variable, and cor-

respond to a node variable. Then, a sequence variable would be created
by giving as input the set of node variables on which the sequence is

applied. Edges for each node would be shared across all sequence vari-

ables related to the node, requiring only two sparse sets per node (in-

going and outgoing edges). This means that deleting an edge (𝑣𝑖 , 𝑣 𝑗 )
would remove this edge in all sequences. The insertion of a node 𝑣𝑖 in
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a sequence variable would exclude 𝑣𝑖 from other sequence variables on

which it is applied.

Assuming a problem with 𝑛 nodes and 𝑘 sequence variables, the space

complexity would be lowered from O(𝑘𝑛2) to O(𝑛(𝑛 + 𝑘)) ≈ O(𝑛2)
if 𝑘 < 𝑛. The drawback is that nodes may be inserted in only one

sequence variable. This limits the application on problems such as the

PCSP from section 4.6.4, but is still applicable to other problems such

as the DARP.

4.7.2.3 Domain Delta

One additional line of research to improve the performance of sequence vari-

ables would be to introduce a domain delta. A domain delta allows retrieving,

within the filtering of a constraint, the domain modifications that were per-

formed since the last call to the filtering. For instance, if a constraint 𝑐 filters

a sequence variable domain, and then one insertion (𝑣1, 𝑣2, 𝑣3) happens, the
delta would be able to tell that only (𝑣1, 𝑣2, 𝑣3) has modified the domain since

the last call to 𝑐 .

Domain deltas are available in solvers such asMaxiCP andOscaR [Sch+24;

Tea12]. They are reminiscent of the AC5 algorithm introduced to implement

the fixpoint computations, where constraints are notified of which values

have been removed since their last call [VDT92]. An Implementation of deltas

within the Gecode solver is discussed in [LS07], along with some incremental

filtering, such as for the AllDifferent constraint [Rég94]. The following dis-

cussion presents how they could be used with sequence variables, although

they do not exist at the time of writing this thesis. We assume that a delta

over a sequence
−→
𝑆 provides the two following functions:

■
−→
𝑆 .delta.getInsertions() retrieves the newest insertions that have oc-

curred, in the form of insertion triplets.

■
−→
𝑆 .delta.getEdgesInSequence() retrieves the newest edges added onto a
sequence due to insertions, in the form of directed edges. This may be

computed based on the preceding delta function.

One constraint where the benefits of deltas can be illustrated is the Dis-

tance constraint. A filtering using delta is shown in Algorithm 12. Lines

in gray are identical to the original one (Algorithm 7). Some reversible in-

tegers now need to be introduced, to maintain information across filtering

calls. One reversible integer previousLength tracks the length of the partial

sequence. Similarly, one reversible integer previousMaxCost𝑗 for very node

𝑣 𝑗 ∈ 𝑉 tracks the largest insertion cost for inserting node 𝑣 𝑗 over filtering

calls.
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Firstly, the travel length of the partial sequence is computed, by summing

to the previous length the cost related to the newest insertions that have oc-

curred (lines 1 to 3). Then, filtering of insertion triplets for each insertable

node 𝑣 𝑗 occurs. Each new edge (𝑣𝑖 , 𝑣𝑘 ) that has been added onto the sequence

is inspected, to see whether the insertion (𝑣𝑖 , 𝑣 𝑗 , 𝑣𝑘 ) is feasible, removing in-

sertions that would exceed the maximum length if performed (lines 21 to 24).

This is similar to the initial filtering, except that only newly defined insertions

are examined instead of all insertions. However, if the largest insertion cost

previousMaxCost𝑗 for a node 𝑣 𝑗 now exceeds the largest allowed distance in-

crease, the past insertions must be examined as well, as they may also exceed

the largest distance allowed. In this case, the incremental filtering is skipped

and the same filtering as in Algorithm 7 is performed (lines 13 to 17).

Although the worst-case time complexity is the same, the best-case time

complexity is lowered, by examining only what portion of the sequence has

changed since the last call to the filtering.

Even though Algorithm 12 showcases how deltas could be used for fil-

tering of constraints, their implementation remains to be designed in a future

work. One should also decide the level of information that deltasmay provide:

are we only interested in the insertions that have occurred, as in Algorithm

12, or should the filtering also be aware of the detour edges deletions? Finally,

not all filtering algorithms may profit from updates based on deltas, and the

memory requirements may be increased due to the information tracked over

calls (for instance the reversible integers previousMaxCost in Algorithm 12).

4.8 Conclusion

This chapter enhances the previous proposal of sequence variables, which

are used in CP to tackle vehicle routing and sequencing problems. Their do-

main representation, compact implementation, and interactions with boolean

variables are proposed and formalized.

These variables are compatible with optional visits, insertion-based

heuristics, and can be easily combined with Large Neighborhood Search.

Through their usage, complex VRPs such as the DARP or the PTP can be

solved in CP while staying close to the state-of-the-art in terms of perfor-

mance. Common search strategies exploiting the minimum number of in-

sertions performed well across VRP variants, showing a strong reusability of

search heuristics. We believe such variables are practical for solving VRPs in

a CP framework.



Algorithm 12: Distance(−→𝑆 , 𝒅,Dist) constraint filtering with delta.

1 length← previousLength.value()
2 for (𝑣𝑖 , 𝑣 𝑗 , 𝑣𝑘 ) ∈

−→
𝑆 .delta.getInsertions() do

3 length← length + 𝒅𝑖, 𝑗 + 𝒅 𝑗,𝑘 − 𝒅𝑖,𝑘
4 if −→𝑆 .isFixed() then
5 Dist← length
6 else
7 ⌊Dist⌋ ← max(length, ⌊Dist⌋)
8 maxDetour← ⌈Dist⌉ − length
9 for 𝑣 𝑗 ∈

−→
𝑆 .getInsertable() do

10 maxCost𝑗 ← previousMaxCost𝑗 .value()
11 if maxCost𝑗 > maxDetour then
12 maxCost𝑗 ← −∞
13 for 𝑣𝑖 ∈

−→
𝑆 .getInsert(𝑣 𝑗 ) do

14 𝑣𝑘 ←
−→
𝑆 .getNext(𝑣𝑖)

15 cost← 𝒅𝑖, 𝑗 + 𝒅 𝑗,𝑘 − 𝒅𝑖,𝑘
16 if cost > maxDetour then
17

−→
𝑆 .notBetween(𝑣𝑖 , 𝑣 𝑗 , 𝑣𝑘 )

18 else
19 maxCost𝑗 ← max (maxCost𝑗 , cost)
20 else
21 for (𝑣𝑖 , 𝑣𝑘 ) ∈

−→
𝑆 .delta.getEdgesInSequence() do

22 cost← 𝒅𝑖, 𝑗 + 𝒅 𝑗,𝑘 − 𝒅𝑖,𝑘
23 if cost > maxDetour then
24

−→
𝑆 .notBetween(𝑣𝑖 , 𝑣 𝑗 , 𝑣𝑘 )

25 else
26 maxCost𝑗 ← max (maxCost𝑗 , cost)
27 previousMaxCost𝑗 .value() ← maxCost𝑗
28 previousLength.value() ← length
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The goal of this thesis was to push further the performance of CP when used

on VRPs. Two main lines of research have been studied.

In Chapter 3, black-box value selection heuristics well suited for VRPs

were presented, keeping existing CP models while enhancing their search

strategies. They automate the nearest neighbor selection on the TSP, and

prove to be valuable on other problems as well.

Chapter 4 studied a new kind of variable specifically designed for rout-

ing and sequencing problems: sequence variables. While previous work

laid the foundations for those variables [TKS20; Tho23], this thesis went

further, by formalizing their domain, enhancing their implementation and

constraints, and applying them on more routing problems. With similar

insertion-based search across VRP variants, relatively good performance was

obtained, demonstrating a strong reusability. During the development of

those variables, new best found solutions were found for the TSPTW, and

solutions obtained on other problems such as the DARP were improved and

are relatively close to the best known.

5.1 Perspectives

In Chapter 3 and 4, some future research directions have already been high-

lighted. We now discuss additional work that seems interesting to investigate.

Value Heuristics The value heuristics presented in Chapter 3 are designed

for optimization problems. It would be valuable to try to apply them on sat-

isfaction problems as well. Some discussions in Section 3.4 already present

ways to generalize them to such problems, for instance by maximizing the

search space to explore compared to minimizing the impact on the objective.

The restricted fixpoint method presented relies on a subset of the con-

straints to quickly estimate the impact on the objective. We proposed to use

constraints on the shortest paths between a variable and the objective within

the constraint network. However, if the goal is to find such an estimate as

fast as possible, other sets of constraints may be more valuable to use. For

instance, one could try to compute the shortest path by considering that the

127
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edges in the constraint network are weighted according to the average run-

ning time of the constraint on which the edge is attached. With this method,

constraints on the shortest (weighted) path(s) would be expected to quickly

reach the (restricted) fixpoint, providing a faster estimate than the original

method. However, this is only targeted at improving the running time to

reach the fixpoint, and experiments should be conducted to see if the filtering

still provides enough information to guide BIVS+RF and RLA+RF.

Sequence Variables Additional research directions have already been dis-

cussed in Section 4.7. Some aim at improving the constraint filtering, refer-

encing algorithms worth considering and describing how incremental filter-

ing could be performed. Some other suggestions were also presented to lower

the memory consumption, by adapting some data structures.

A class of VRP that would be interesting to tackle with sequence variables

are online transportation problems (also called dynamic vehicle routing prob-

lems), where transportation requests are revealed in real time [KPS98]. Given

that sequence variables are designed for insertion-based search, it would be

worthwhile to solve such problems with them, by inserting into the current

vehicle path an additional transportation request added into a system. In par-

ticular, work such as [BJM19] explores the routing of taxis in New York, and

part of their solution uses insertion-based strategies. Attempting to solve

their problem with sequence variables would not only assess their applica-

tion for online problems, but also force the development of scaling techniques

for sequence variables, given the huge set of transportation requests involved

(more than 500,000 trips every day [BJM19; 25]). Other similar online prob-

lems such as [Zha+23; BV03a] and the book from Van Hentenryck and Bent,

[VB06], are valuable resources to help conduct such future research.

The filtering from constraints dealing with distance matrices (namely the

Distance and TransitionTimes constraints) require the triangular inequality

to hold. Although this is the case on the majority of problems tackled in this

thesis, it may be interesting to create variants of those filtering algorithms

that handle cases where it does not hold.

Finally, the constraints involving distances matrices are defined using a

fixed transition matrix. However, the transitions between elements may in-

stead change over time in some problems, for instance by increasing transi-

tion times during certain time windows, to account for traffic congestion. It

would be worthwhile to see if some of the techniques presented in [Pra23],

tackling the time-dependent TSPTW, can be applied with sequence variables,

given that part of their approach relies on insertion-based search. More-

over, there exists CP approaches with the sequence variables from CP Op-

timizer [Lab+18b] on time-dependent VRPs [MLS15], extending scheduling

constraints to take into account time-dependent transitions.
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