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Introduction 1
Reasoning under uncertainty is the task of reasoning about one or more un-
certain events. Probability theory is the most common method for quantify-
ing uncertainty. In this method, each event is represented by a random vari-
able associated with a specific probability distribution. A probabilistic model

represents the joint distribution of all the random variables, and probabilis-

tic inference is the process of querying this representation. Probabilistic rea-
soning has applications in many real-world domains. For example, Bayesian
networks, one of the most popular probabilistic models, have been used in
medicine [And+91; Oni03], biology [JK99], weather prediction [Abr+96], or
wildlife monitoring [AMD08; For+16].

Another popular reasoning system is based on symbolic (i.e., human-readable)
constraints. For example, propositional logic is one of the most popular lan-
guages to express such constraints (e.g., the variable X and Y must be true, at
least one variable between X and Y must be true) and has many applications
such as planning [KS92], biology [LM06], software testing [KM04], and many
more [Mar08]. In particular, over the last two decades, propositional logic has
emerged as a method for solving probabilistic inference problems [CD08].
The idea is that a probabilistic model can be encoded as a weighted boolean
formula, and the inference task is reduced to a propositional logic problem.
For example, it is known that computing the probability of some observa-
tion can be reduced to counting the number of satisfying assignments of a
weighted boolean formula; this is the weighted model counting (WMC) prob-
lem.

In their general form, the probabilistic inference tasks studied in this work
and WMC are #𝑃-Complete.Designing algorithms that solve such problems
is challenging, but modern model counters efficiently solve a wide range of
problems. However, such efficiency comes at the cost of complex solvers that
are difficult to extend and modify. Nowadays, probabilistic logical reasoning
(combining probabilistic and symbolic reasoning) solvers are used as a sub-
task in other AI domains; hence, it becomes crucial to have solvers that can
be adapted to various contexts and requirements.

One domain that has gained significant interest in recent years is neuro-
symbolic (NeSy) AI, which combines neural networks with symbolic reason-
ing. NeSy AI aims to combine the strength of neural networks (NN), which

1



2 Chapter 1. Introduction

have demonstrated state-of-the-art performance in various AI domains, with
symbolic reasoning. To illustrate the need for such mixed systems, let us take
the example of autonomous driving [Sin+22; Giu+23]. Autonomous driving
requires a system for identifying objects (e.g., road lines, stop signs, other ve-
hicles, pedestrians) and making appropriate decisions according to their en-
vironment. However, pure neural networks have difficulties complying with
background symbolic constraints (e.g., a traffic light cannot be red and green
simultaneously; a person is different from a car). On the other hand, such
symbolic constraints are easily expressed using propositional logic. Hence, in
the context of autonomous driving, combining neural and symbolic reasoning
allows the power of neural networks to be leveraged for object identification
while ensuring that their output respects a set of predefined constraints.

This work explores how WMC can be specialised for probabilistic infer-
ence in a simple and easily adaptable manner. More specifically, we propose
a new modelling language called Schlandals, based on propositional logic,
which incorporates the structure of probabilistic models. We associate a new
solver of the same name with this language, which includes algorithms to
compute exact and approximate weighted model counts on its formulas. To
be easily extensible and adaptable, the Schlandals solver implements the most
basic elements needed to solve the WMC problem. Despite its simplicity, we
demonstrate that this solver is competitive with state-of-the-art model coun-
ters and, in some cases, outperforms them. Moreover, when the count cannot
be computed exactly, Schlandals is the first solver to return a good lower and
upper bound on the weighted model count. On the other hand, most classi-
cal approximation algorithms for the WMC provide approximations or lower
bounds with statistical guarantees, meaning they are probabilistically valid.

The rest of this thesis is organised as follows. Chapter 2 introduces the
necessary knowledge to understand this manuscript and related work. It de-
fines the probabilistic models, inference tasks studied, and model counting
problems. Then, the Schlandals modelling language is defined in Chapter 3,
and the solver, as well as the exact counting algorithms, are described in
Chapter 4. The approximate counting algorithms are developed in Chapter 5.
We conclude and give further research directions in Chapter 6.

This manuscript is mainly based on the two following papers:

■ A. Dubray, P. Schaus, and S. Nijssen. “Probabilistic Inference by Pro-
jected Weighted Model Counting on Horn Clauses”. In: LIPIcs, Volume

280, CP 2023 280 (2023). Ed. by R. H. C. Yap. issn: 1868-8969. doi:
10.4230/LIPICS.CP.2023.15. (Visited on 03/07/2025)

■ A. Dubray, P. Schaus, and S. Nijssen. “AnytimeWeightedModel Count-
ing with Approximation Guarantees for Probabilistic Inference”. In:

https://doi.org/10.4230/LIPICS.CP.2023.15


3

LIPIcs, Volume 307, CP 2024 307 (2024). Ed. by P. Shaw. issn: 1868-8969.
doi: 10.4230/LIPICS.CP.2024.10. (Visited on 03/07/2025)

Moreover, our work has led to the following collaboration:

■ L. Dierckx, A. Dubray, and S. Nijssen. “Learning from Logical Con-
straints with Lower- and Upper-Bound Arithmetic Circuits” Interna-
tional Joint Conference on Artificial Intelligence (IJCAI) 2025.

The parts of this paper related to this thesis’ scope are also presented in this
manuscript. This manuscript also contains new, unpublished content. The
introduction to each chapter clearly defines the content that has not been
published before.

Finally, our work has also resulted in the following publications, which
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included herein.

■ A. Dubray, G. Derval, S. Nijssen, and P. Schaus. “Mining Constrained
Regions of Interest: An Optimization Approach”. In: Discovery Sci-

ence. Ed. by A. Appice, G. Tsoumakas, Y. Manolopoulos, and S. Matwin.
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030-61526-0 978-3-030-61527-7. doi: 10.1007/978-3-030-61527-
7_41. (Visited on 03/07/2025)

■ A. Dubray, S. Nijssen, I. Thomas, and P. Schaus. “A Seriation Based
Framework to Visualize Multiple Aspects of Road Transport from GPS
Trajectories”. In: 2021 IEEE International Intelligent Transportation Sys-

tems Conference (ITSC). IEEE, 2021. (Visited on 03/07/2025)

■ A. Dubray, G. Derval, S. Nijssen, and P. Schaus. “Optimal Decoding of
Hidden Markov Models with Consistency Constraints”. In: Discovery
Science. Ed. by P. Pascal and D. Ienco. Vol. 13601. Cham: Springer
Nature Switzerland, 2022. isbn: 978-3-031-18839-8 978-3-031-18840-4.
doi: 10.1007/978-3-031-18840-4_29. (Visited on 03/07/2025)

https://doi.org/10.4230/LIPICS.CP.2024.10
https://doi.org/10.1007/978-3-030-61527-7_41
https://doi.org/10.1007/978-3-030-61527-7_41
https://doi.org/10.1007/978-3-031-18840-4_29




Background Knowledge 2
This chapter introduces the basic concepts of propositional model counting
and probabilistic inference. Moreover, the three probabilistic models and in-
ference tasks used in our experiments are presented.

2.1 Propositional Logic and Model Counting

This section introduces the notations related to propositional logic and the
model counting problem: we define the counting problems and briefly outline
how to solve them using search-based and compilation algorithms.

2.1.1 From Satisfiability to Counting Problems

In the rest of this work, bold letters denote vectors or sets of elements; cap-
ital letters are used for variables. True is denoted by ⊤ and false by ⊥. Let
B = {𝐵1, . . . , 𝐵𝑛} be a set of boolean variables (𝐵 ∈ {⊤,⊥} ∀𝐵 ∈ B). A lit-
eral 𝑙 denotes either the variable 𝐵 or its negation ¬𝐵. This work focuses on
propositional formulas in Conjunctive Normal Form (CNF); hence, a clause is
a disjunction of literals 𝐶 = 𝑙1 ∨ . . . ∨ 𝑙𝑘 and a formula 𝐹 is a conjunction of
clauses 𝐹 = 𝐶1 ∧ . . . ∧ 𝐶𝑚 . An interpretation 𝐼 is an assignment to a subset
X ⊆ B of the variables and is called partial if X ≠ B. We define an inter-
pretation 𝐼 as a function 𝐼 : X ↦→ {⊤,⊥} mapping elements of X to a truth
value.

Let 𝐼1 : X ↦→ {⊤,⊥} and 𝐼2 : Y ↦→ {⊤,⊥} be two interpretation such
thatX ∩ Y = ∅. We denote 𝐼 = 𝐼1 ∪ 𝐼2 the assignment on Z = X ∪ Y such
that 𝐼 : Z ↦→ {⊤,⊥} is defined as

𝐼 (𝑍 ) =
{
𝐼1(𝑍 ) if 𝑍 ∈ X
𝐼2(𝑍 ) otherwise

We denote by 𝐹 [𝐼 ] the evaluation of 𝐹 when the variables in 𝐼 are replaced
by their assignments, and the formula is reduced using the classical rules of
propositional logic. A model of 𝐹 is an interpretation 𝐼 : B ↦→ {⊤,⊥} such
that 𝐹 [𝐼 ] = ⊤.

5



6 Chapter 2. Background Knowledge

Problem 1 (Boolean Satisfiability (SAT)). Let 𝐹 be a boolean formula, in CNF,

over variables B. The satisfiability problem is to decide if there exists an inter-

pretation 𝐼 : B ↦→ {⊤,⊥} such that 𝐹 [𝐼 ] = ⊤.

Example 1: Satisfiability
Consider the following boolean formula in CNF, used as a running example:

𝐹 = (𝐴 ∨ ¬𝐵) ∧ (¬𝐴 ∨𝐶 ∨ 𝐷) ∧ (¬𝐴 ∨ ¬𝐶).

To be satisfied by an interpretation 𝐼 , each clause of 𝐹 must be satisfied. If
we define 𝐼 such that 𝐼 (𝐴) = ⊤, 𝐼 (𝐶) = ⊥ and 𝐼 (𝐷) = ⊤, it can be seen that
each clause is satisfied. Hence, 𝐹 is satisfiable.

Problem 1 is the classical NP-Complete decision problem [Coo23]. Mul-
tiple variants exist of the SAT problem, but this work focuses on a particular
type of variation: the model counting problem.

Problem 2 (Model Counting (#SAT)). Let 𝐹 be a boolean formula, in CNF, over

variablesB. The set of models of 𝐹 is defined as follows.

S(𝐹 ) = {𝐼 : B ↦→ {⊤,⊥} | 𝐹 [𝐼 ] = ⊤}

The model counting problem is to compute #𝑆𝐴𝑇 (𝐹 ) = |S(𝐹 ) |

Example 2: Model Counting
Let us demonstrate the counting problem with our running example. One
way to compute the number of models of 𝐹 is to create its truth table and
count the entries that evaluate⊤. From 𝐹 ’s truth table below, it can be seen
that #𝑆𝐴𝑇 (𝐹 ) = 6.

A B C D F(I) A B C D F(I)

⊤ ⊤ ⊤ ⊤ ⊥ ⊤ ⊤ ⊥ ⊥ ⊥
⊤ ⊤ ⊤ ⊥ ⊥ ⊤ ⊤ ⊥ ⊥ ⊤
⊤ ⊥ ⊤ ⊤ ⊥ ⊤ ⊥ ⊥ ⊥ ⊥
⊤ ⊥ ⊤ ⊥ ⊥ ⊤ ⊥ ⊥ ⊥ ⊤
⊥ ⊤ ⊤ ⊤ ⊥ ⊥ ⊤ ⊥ ⊥ ⊥
⊥ ⊤ ⊤ ⊥ ⊥ ⊥ ⊤ ⊥ ⊥ ⊥
⊥ ⊥ ⊤ ⊤ ⊤ ⊥ ⊥ ⊥ ⊥ ⊤
⊥ ⊥ ⊤ ⊥ ⊤ ⊥ ⊥ ⊥ ⊥ ⊤

Notice that Problem 2 is the most straightforward counting extension of
Problem 1: instead of searching for one model, one must count all of them.
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Problem 2 is then structurally harder than Problem 1; it is #𝑃-Complete [Val79b].
To define this complexity class, we first define counting Turing mahcine.

Definition 1 (Counting Turing machine [Val79a]). A counting Turing ma-

chine is a standard non-deterministic Turing machine (i.e., a Turing machine

with mutltiple possible actions per state) with an auxiliary output device that

prints, on a special tape, the number of accepting computations induced by the

input. It has a worst-case time complexity of 𝑓 (𝑛) if the longest accepting com-

putation induced by the set of all inputs of size 𝑛 takes 𝑓 (𝑛) steps.

We can now define the #𝑃 complexity class.

Definition 2 (#𝑃 complexity class [Val79a]). #𝑃 is the class of all function that

can be computed by counting Turing machines of polynomial time complexity.

It is known that the satisfiability problem can be solved in polynomial
time on a non-deterministic TM; hence, it follows from Definition 2 that the
model counting problem is in #𝑃 . In particular, Valiant showed that it was
#𝑃-Complete [Val79b].

A key observation when modelling a problem as a propositional formula
is that, sometimes, additional boolean variables must be introduced to encode
the constraints of the initial problem. These additional variables might intro-
duce unwanted models. To solve this issue, the problem of projected model
counting has been defined [Azi+15].

Problem 3 (Projected Model Counting (#∃SAT)). Let 𝐹 be a boolean formula,

in CNF, over variablesB. Let P ,X ⊆ B be a partitioning of the variables. The

set of models of 𝐹 projected on the variables in P is defined as follows.

SP (𝐹 ) = {𝐼 : P ↦→ {⊤,⊥} | ∃ 𝐼 ′ : X ↦→ {⊤,⊥} such that 𝐹 [𝐼 ∪ 𝐼 ′] = ⊤}

The projected model counting problem is to compute #∃𝑆𝐴𝑇 (𝐹,P ) = |SP (𝐹 ) |

The projected version of themodel counting problem only considersmod-
els for a subset of the variables called the projected variables. The interpreta-
tions in the set SP (𝐹 ) can be viewed as a grouping of 𝐹 ’s models based on
their assignments to the projected variables. Hence, two different models of 𝐹
can lead to the same element in SP (𝐹 ). We call the elements in SP (𝐹 ) mod-

els projected on P , or projected models when P is evident from the context.
Problem 3 is more generic than Problem 2: the model counting problem can
be viewed as a projected model counting problem with P =B.

Example 3: Projected Model Counting
Let us compute the projected model count of our small example formula

𝐹 = (𝐴 ∨ ¬𝐵) ∧ (¬𝐴 ∨𝐶 ∨ 𝐷) ∧ (¬𝐴 ∨ ¬𝐶)
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with P = {𝐴, 𝐵}. Projected model counting can be seen as a succession
of two steps: a counting step on the projected variables and a satisfiabil-
ity check on the non-projected variables. Below is the truth table for 𝐹
with coloured boxes highlighting interpretations that share the same as-
signment for 𝐴 and 𝐵. There are only four possible interpretations on
{𝐴, 𝐵}; hence, the four boxes represent the counting part of the problem.
If an interpretation on {𝐴, 𝐵,𝐶, 𝐷} that evaluates to ⊤ exists in a box, then
the corresponding interpretation on {𝐴, 𝐵} is a projected model. It can be
seen that the green box is the only one not containing a model on 𝐹 ; hence,
we have that #∃𝑆𝐴𝑇 (𝐹,P ) = 3.

A B C D F(I) A B C D F(I)

⊤ ⊤ ⊤ ⊤ ⊥ ⊤ ⊤ ⊥ ⊥ ⊥
⊤ ⊤ ⊤ ⊥ ⊥ ⊤ ⊤ ⊥ ⊥ ⊤
⊤ ⊥ ⊤ ⊤ ⊥ ⊤ ⊥ ⊥ ⊥ ⊥
⊤ ⊥ ⊤ ⊥ ⊥ ⊤ ⊥ ⊥ ⊥ ⊤
⊥ ⊤ ⊤ ⊤ ⊥ ⊥ ⊤ ⊥ ⊥ ⊥
⊥ ⊤ ⊤ ⊥ ⊥ ⊥ ⊤ ⊥ ⊥ ⊥
⊥ ⊥ ⊤ ⊤ ⊤ ⊥ ⊥ ⊥ ⊥ ⊤
⊥ ⊥ ⊤ ⊥ ⊤ ⊥ ⊥ ⊥ ⊥ ⊤

Finally, we define the problem of projected weighted model counting; in
this variation, every interpretation has a weight, and the weighted sum of
the models must be computed. In this work, we consider the commonly used
framework in which a weight is assigned to each literal, and the weight of an
interpretation is the product of the weights of its literals.

Problem 4 (weighted#∃𝑆𝐴𝑇 ). Let 𝐹 be a boolean formula, in CNF, over vari-

ablesB = P ∪X , withP the projected variables. LetL = ∪𝑃∈P {𝑃,¬𝑃} be the
set of possible literals of the projected variables of 𝐹 and𝜔 : L ↦→ R a weighting

function. The weighted #∃SAT problem is to compute the weighted sums of the

projected models of 𝐹 defined as follows.

weighted#∃𝑆𝐴𝑇 (𝐹,P ) =
∑︁

𝐼 ∈SP (𝐹 )

©«
∏
𝑃∈P

𝐼 (𝑃 )=⊤

𝜔 (𝑃) ×
∏
𝑃∈P

𝐼 (𝑃 )=⊥

𝜔 (¬𝑃)
ª®®®¬

This last problem is the most generic version of the counting problems
considered; we can compute the (projected) model count of 𝐹 using a unit
weight for all literals.
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Example 4: Weighted Projected Model Counting
We showed above that if 𝐹 = (𝐴 ∨ ¬𝐵) ∧ (¬𝐴 ∨ 𝐶 ∨ 𝐷) ∧ (¬𝐴 ∨ ¬𝐶)
and P = {𝐴, 𝐵}, then #∃𝑆𝐴𝑇 (𝐹,P ) = 3. In particular, the only partial
interpretation 𝐼 not being a projectedmodel of 𝐹 onP is such that 𝐼 (𝐴) = ⊥
and 𝐼 (𝐵) = ⊤. Let us define the weight function 𝜔 as follows: 𝜔 (𝐴) =
0.6, 𝜔 (¬𝐴) = 0.4, 𝜔 (𝐵) = 0.2, 𝜔 (¬𝐵) = 0.8. Then we have

weighted#∃𝑆𝐴𝑇 (𝐹, {𝐴, 𝐵}) = 0.6 × 0.2︸    ︷︷    ︸
𝐴=⊤,𝐵=⊤

+ 0.6 × 0.8︸    ︷︷    ︸
𝐴=⊤,𝐵=⊥

+ 0.4 × 0.8︸    ︷︷    ︸
𝐴=⊥,𝐵=⊥

= 0.92

The last example highlights a standard setting in weighted model count-
ing in which 𝜔 (𝑃) + 𝜔 (¬𝑃) = 1 (𝑃 ∈ P , 𝜔 (𝑃), 𝜔 (¬𝑃) > 0). Such a setting
is typical when modelling probabilistic inference problems, as the weights
represent probabilities. We assume this setting unless stated otherwise. This
work focuses on projected weighted model counting; for ease of notation,
we refer to this problem as model counting and denote the weighted model
count of a formula by count. We refer to Problem 2 as the unweighted model
counting problem to avoid confusion when necessary. Moreover, we use the
notation pwmc(𝐹,P ) as a shorthand way of writing weighted#∃𝑆𝐴𝑇 (𝐹,P ).

2.1.2 Counting Models with a Search-based Algorithm

There are twomain approaches for counting the assignments of a boolean for-
mula, and the first one is a variation of the well-known DPLL search [DP60].
Such methods do an exhaustive depth-first search over the formula’s assign-
ments, branching over the boolean variables and applying Boolean Unit Prop-
agation (BUP) at each search tree node. Let us first detail this propagation
before explaining the search procedure.

Algorithm 1 details how BUP works when a choice (e.g., 𝐵 = ⊤) is made.
It is a fixed-point algorithm that assigns truth values to variables. The for-
mula is unsatisfiable if a variable is assigned to contradictory values, and ⊥
is returned (line 6). Otherwise, the value is assigned to the variable (line 7),
and clauses that are respected (i.e., that evaluates to ⊤) are removed from the
residual formula (lines 8-9). Then, literals evaluated to ⊥ are removed from
the remaining clauses (lines 10-16). During this process, a new assignment
is added to the queue if a clause is reduced to a single literal. The residual
formula 𝐹 ′ is returned when the assignment queue is empty (line 19).

Search-basedmodel counters require the implementation of two key tech-
niques for efficiency. First, they must implement decomposition into indepen-

dent components. When a formula 𝐹 can be decomposed into sub-formulas
that do not share variables, the count of each sub-formula can be counted in-
dependently. Then, 𝐹 ’s count is the multiplication of its sub-formulas’ count.
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Algorithm 1: Boolean Unit Propagation
1 Function BUP(𝐹, 𝐵, 𝑏)

input : 𝐹 a boolean formula in CNF over variables B
input : 𝐵 ∈ B a boolean variable to set to value 𝑏 ∈ {⊤,⊥}
output: 𝐹 ′ the residual formula

2 𝐹 ′ ← 𝐹

3 𝑄 ← Queue(); 𝑄 .push((𝐵,𝑏))
4 while |𝑄 | > 0 do
5 (𝑉 , 𝑣) ← Q.pop()
6 if 𝑉 has been previously assigned to ¬𝑣 then return ⊥
7 assign 𝑣 to 𝑉
8 if 𝑣 = ⊤ then 𝐹 ′ ← 𝐹 ′ \ {𝐶 | 𝐶 ∈ 𝐹 ′ ∧𝑉 ∈ 𝐶}
9 if 𝑣 = ⊥ then 𝐹 ′ ← 𝐹 ′ \ {𝐶 | 𝐶 ∈ 𝐹 ′ ∧ ¬𝑉 ∈ 𝐶}

10 foreach 𝐶 ∈ 𝐹 ′ do
11 if 𝑣 = ⊤ and ¬𝑉 ∈ 𝐶 then 𝐶 =𝐶 \ {¬𝑉 }
12 if 𝑣 = ⊥ and 𝑉 ∈ 𝐶 then 𝐶 =𝐶 \ {𝑉 }

/* 𝐶 is a clause with only one literal */
13 if |𝐶 | = 1 then
14 if 𝐶 =𝑉 ′ then 𝑄 .push((𝑉 ′,⊤))
15 if 𝐶 = ¬𝑉 ′ then 𝑄 .push((𝑉 ′,⊥))
16 end
17 end
18 end
19 return 𝐹 ′

Example 5: Independent Components
Let 𝐹 = (𝐴∨¬𝐵)∧(¬𝐴∨𝐶∨𝐷)∧(¬𝐴∨¬𝐶)∧(𝐸∨¬𝐺) andP = {𝐴, 𝐵, 𝐸,𝐺}.
This formula can be decomposed into two sub-formulas that do not share
variables: 𝐹1 = (𝐴∨¬𝐵) ∧ (¬𝐴∨𝐶∨𝐷) ∧ (¬𝐴∨¬𝐶) and 𝐹2 = (𝐸∨¬𝐺). An
interpretation of 𝐹 can also be decomposed into interpretations of 𝐹1 and
𝐹2. Moreover, when computing the projected model count on each com-
ponent, the projected variables can be reduced to those in the component.
We already saw that #∃𝑆𝐴𝑇 (𝐹1, {𝐴, 𝐵}) = 3, and #∃𝑆𝐴𝑇 (𝐹2, {𝐸,𝐺}) = 3 as
only the assignment 𝐸 = ⊥,𝐺 = ⊤ leads to ⊥.

Hence, any combination of a model of 𝐹1 with a model of 𝐹2 forms a
model of 𝐹 since all clauses are respected. For example, 𝐴 = ⊤, 𝐵 = ⊤ is
a projected model of 𝐹1 and 𝐸 = ⊤,𝐺 = ⊥ is a model of 𝐹2. Hence, the
assignment 𝐴 = ⊤, 𝐵 = ⊤, 𝐸 = ⊤,𝐺 = ⊥ is a projected model of 𝐹 .

Let us define the weights of the subformula’s projected models as fol-
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lows.

𝜔 (𝐴 = ⊤, 𝐵 = ⊤) = 0.18 𝜔 (𝐸 = ⊤,𝐺 = ⊤) = 0.08
𝜔 (𝐴 = ⊤, 𝐵 = ⊥) = 0.12 𝜔 (𝐸 = ⊤,𝐺 = ⊥) = 0.02
𝜔 (𝐴 = ⊥, 𝐵 = ⊥) = 0.28 𝜔 (𝐸 = ⊥,𝐺 = ⊥) = 0.18

The weighted model count of 𝐹1 is 0.58, the weighted model count of 𝐹2
is 0.28, and the weighted model count of 𝐹 is 0.58 × 0.28 = 0.1624. The
computation of 𝐹 ’s weighted model count is as follows. Every combination
of the subformula’s projected models is a projected model of 𝐹 , and its
weight is given by multiplying the weight of the subformula’s models. For
example, the models’ weights based on 𝐴 = ⊤ and 𝐵 = ⊤ are as follows.

0.18 × 0.08 + 0.18 × 0.02 + 0.18 × 0.18 = 0.18 × (0.08 + 0.02 + 0.18)
= 0.18 × pwmc(𝐹2, {𝐸,𝐺})

If 𝑐2 represents the weighted model count of 𝐹2, then the weighted
model count of 𝐹 is given as follows.

0.18 × 𝑐2 + 0.12 × 𝑐2 + 0.28 × 𝑐2 = 𝑐2 × (0.18 + 0.12 + 0.28)
= 𝑐2 × pwmc(𝐹1, {𝐴, 𝐵})

This decomposition is not only applied at the root node; after each deci-
sion in the search tree, after the BUP algorithm, it is possible to detect inde-
pendent components. Hence, this is a powerful tool for search-based model
counters as it can significantly reduce the size of the formulas.

The second key aspect of search-based model counters is a caching sys-

tem. Search-based model counters work by assigning a variable to either ⊤
or ⊥, applying the BUP algorithm, and recursively computing the count of
the residual formula. The same residual formula can appear multiple times in
the search space; hence, recent model counters store the count of each solved
sub-formula in a cache. Such a caching system is typically implemented us-
ing a HashMap: a hashable key (e.g., a string representation) is computed for
each sub-formula, and its count is stored as the corresponding value in the
HashMap. The most basic representation for a formula directly encodes each
clause with integers.

Example: Caching System
Let 𝐹 = (𝑋1 ∨ ¬𝑋3 ∨ 𝑋4) ∧ (𝑋2 ∨ ¬𝑋3 ∨ 𝑋4). Let us assume that a search-
based solver has the partial assignment 𝑋1 = ⊤, 𝑋2 = ⊥; then, the residual
formula is 𝐹1 = ¬𝑋3 ∨ 𝑋4, whose model count is 3. It can be represented
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using the sequence −3, 4, 0: each integer represents a variable, the sign
corresponds to their polarity, and 0 indicates the end of a clause. Let us
denote 𝐶 as the cache. Then, the solver computes the model count of 𝐹1
and stores the mapping 𝐶 [−3, 4, 0] ↦→ 3.

Then, let us assume that in another part of the search space, the solver
has the partial assignment 𝑋1 = ⊥, 𝑋2 = ⊤. Such an assignment results in
a residual formula 𝐹2 = ¬𝑋3∨𝑋4, which is equivalent to 𝐹1 and, hence, has
the same representation. The solver can then directly query the cache and
return 𝐶 [−3, 4, 0].

Algorithm 2: DPLL-based algorithm for solving Problem 4
1 Function DPLL-PWMC(𝐹, P, 𝜔,𝐶)

input : 𝐹 a boolean formula, over variables B, in CNF
input : P ⊆ B a set of projected variables
input : 𝜔 a literal-weight function
input : 𝐶 a cache of sub-results
output: pwmc(𝐹, P)

2 if 𝐹 ∈ 𝐶 then return 𝐶 [𝐹 ]
3 if 𝐹 = ⊤ then return

∑
𝐼 ∈SP (𝐹 ) 𝜔 (𝐼 )

4 if P = ∅ then return 1 if 𝐹 is SAT else 0
5 𝑃 ← variableSelection(𝐹, P)
6 foreach 𝑣 ∈ {⊤,⊥} do
7 𝐹 ′ ← BUP(𝐹, 𝑃, 𝑣)
8 if 𝐹 ′ = ⊥ then count𝑣 ← 0
9 else
10 𝑓 𝑖𝑥𝑒𝑑 ← {𝑃 ′ ∈ P | 𝑃 ′ is forced to ⊤ or ⊥ during BUP }
11 count𝑣 ←(∏

𝑃 ′∈ 𝑓 𝑖𝑥𝑒𝑑 |𝑃 ′=⊤𝜔 (𝑃 ′)
)
×

(∏
𝑃 ′∈ 𝑓 𝑖𝑥𝑒𝑑 |𝑃 ′=⊥𝜔 (¬𝑃 ′)

)
12 𝐶𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡𝑠 ← all independent components of 𝐹 ′
13 foreach 𝐶𝑜𝑚𝑝 ∈ 𝐶𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡𝑠 do
14 P′ ← P reduced to the variables in 𝐶𝑜𝑚𝑝

15 count𝑣 ← count𝑣× DPLL-PWMC(𝐶𝑜𝑚𝑝, P′, 𝜔,𝐶)
16 end
17 end
18 end
19 𝐶 [𝐹 ] ← count⊤ + count⊥
20 return 𝐶 [𝐹 ]

Algorithm 2 shows the general search procedure to compute pwmc(𝐹,P ).
Its structure resembles the one of a classical DPLL algorithm: it heuristically
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selects one variable in P (line 5), assigns it to true or false, and propagates
its choice using BUP, reducing 𝐹 (line 7), and recursively explore the residual
formula (line 15). When a formula is reduced by the propagation (line 7) and is
not⊥, it is decomposed into independent components (line 12) that are solved
independently. A model has been found when the residual formula becomes
⊤ (line 3). However, not all projected variables may have been assigned. In
such a case, all assignments to the remaining projected variables are models
of 𝐹 , and the weighted model count is the weighted sum of all remaining
interpretations. On the other hand, when P = ∅, there are no more variables
to branch on, but 𝐹 might still contain clauses; hence, it must be checked that
𝐹 is satisfiable (line 4). Note that this problem is NP-complete in the general
case; hence, depending on the structure of the residual formula, this check
can take a long time.

The intuition behind the computation of a branch’s count (count𝑣) is as
follows. When branching on a value for 𝑃 , the algorithm builds an inter-
pretation by setting 𝑃 and possibly other variables to a truth value during
the propagation. Hence, all variables 𝑃 ′ ∈ P assigned during the propaga-
tion (line 10) are part of the interpretation, and the product of their weights
is computed (line 11). Then, in the recursive calls, the algorithm builds the
rest of the interpretations, and their weights (i.e., the value returned by the
DPLL-PWMC function) are multiplied by the branch count. As all interpreta-
tions share the same assignment for the variables assigned during the propa-
gation, the first term of count𝑣 can be factorised and added at the beginning.
Finally, the weighted count of 𝐹 is computed by summing the counts of the
two branches.

Note that Algorithm 2 is general enough to solve the non-projected and
non-weighted variation of the counting problem. If P = B, the condition at
line 3 is redundant with the condition at line 4. On the other hand, for the
unweighted case, using 𝜔 (𝑃) = 1 effectively gives the model count of 𝐹 .

One of the strengths of depth-first search is its memory efficiency; how-
ever, in the case of model counting, a cache is used to store the result of
sub-formulas encountered during the search. Hence, the memory used by
Algorithm 2 grows linearly with the size of the search space, which can be
exponentially large. Fortunately, it is possible to limit the size of the cache
to reduce the memory used by the solvers. When the cache reaches its limit,
some entries are heuristically removed (e.g., [Thu06; LM20]). For example,
a score-based cache system has been proposed in the literature: when the
cache reaches a specific limit, the entries that are less frequently queried are
removed [Thu06].
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Example 7: DPLL-based Search Algorithm
As an example for the execution of Algorithm 2, let us show how it com-
putes the weighted model count of the formula 𝐹 = (𝐴∨𝐵)∧ (𝐵∨𝐷∨¬𝐸)∧
(𝐶∨¬𝐸). Below is a possible search tree when applying the Algorithm 2 on
𝐹 with P = {𝐴, 𝐵,𝐶, 𝐷}. For simplicity, we assume that each literal has a
unit weight. Hence, in this example, we solve the classical model counting
problem.

𝐷

∧

𝐴

⊤ ⊤

𝐶

⊤ ⊤

𝐴

𝐵

⊤

⊤

⊤ ⊥ ⊤ ⊥

⊥

⊤

⊤ ⊥

⊥

Let us assume the algorithm starts by branching on𝐷 and first explores
the branch 𝐷 = ⊤. Applying BUP with 𝐷 = ⊤ only removes 𝐹 ’s second
clause, and no unit propagation is done. Hence, the formula becomes 𝐹 ′ =
(𝐴∨𝐵)∧ (𝐶∨¬𝐸), and it can be seen that the two clauses of 𝐹 ′ do not share
any variables. Algorithm 2 decomposes 𝐹 ′ into 𝐹 ′1 = 𝐴∨𝐵 and 𝐹 ′2 =𝐶∨¬𝐸.

For 𝐹 ′1, let us assume that the algorithm branches on the variable 𝐴.
When applying the propagation with 𝐴 = ⊤, the formula is satisfied, and
no clause remains in the residual formula. Subsequently, a leaf is found, but
𝐵 is not assigned. Hence, the algorithm returns 2 (= 𝜔 (𝐵)+𝜔 (¬𝐵)) as count.
In the other branch, setting 𝐴 = ⊥ forces, during propagation, 𝐵 = ⊤, and
the formula is satisfied, leading to a leaf with a count of 1. Both branches
have been explored, and the model count of𝐴∨𝐵 is 3. The same reasoning
can be made for 𝐹 ′2, and its model count is also 3. Both decompositions
have been solved, and the model count of the decomposition is 3 × 3 = 9.

The whole left sub-tree has been explored at the root, and only the case
𝐷 = ⊥ remains. After the BUP, the residual formula is 𝐹 ′ = (𝐴 ∨ 𝐵) ∧ (𝐵 ∨
¬𝐸) ∧ (𝐶 ∨ ¬𝐸). When branching on 𝐴 = ⊥, the rightmost branch, the
problem is solved after the propagation. Indeed, after this assignment, the
first clause becomes a unit one, forcing 𝐵 = ⊤ and removing the second
clause from 𝐹 ′. Hence, the formula becomes 𝐶 ∨ ¬𝐸, which has already
been solved and stored in the cache and can be retrieved (as shown by the
dotted line leading to the corresponding sub-tree). The same behaviour
occurs when assigning 𝐴 = ⊤, which removes the first clause from 𝐹 ′.
When branching on 𝐵, the assignment either removes the second clause or
forces the assignment on 𝐸.
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2.1.3 Literature Review of Search-Based Model Counters

Cachet [San+04; SBK05a] is one of the first successful search-based model
counterswhich incorporates the components described above: formula caching [BDP03;
Bea+03; ML98] and dynamic component analysis [BP00; BDP03]. In addition,
it also makes use of clause learning [SS96; Zha97; Zha+01]. Clause learn-
ing is a technique initially developed for SAT solvers: when a conflict is en-
countered (i.e., forcing opposite literals during propagation), the cause (i.e.,
a subset of assignments made on the current branch) is detected, and a new
clause is added to the formula forbidding such assignments. For example, if
the cause for a conflict is the assignment 𝑥 = ⊤, 𝑦 = ⊥, and 𝑧 = ⊤, the learned
clause is ¬𝑥 ∨𝑦∨¬𝑧. Although clause learning and component caching seem
to be orthogonal techniques, the author of Cachet showed that combining
these techniques must be done carefully as it can lead to cache entries with
incorrect model counts.

Finally, Cachet also analyses various branching heuristics formodel count-
ing and proposes a new heuristic called Variable State Aware Decaying Sum

(VSADS) [SBK05a]. VSADS is a mix of literal counting heuristic [Mar99] and
Variable State Independent Decaying Sum (VSIDS) [Mad+01; Zha+01]. It scores
each variable based on its number of occurrences in the residual formula
(literal counting) and the number of times it appears in the learned clauses
(VSIDS). Overall, the VSADS heuristic performs better than the other heuris-
tics considered in the Cachet’s benchmarks.

The sharpSAT solver serves as the basis of many modern model coun-
ters [Thu06]. One of the specificities of sharpSAT is that it explores multiple
caching schemes. In the original sharpSAT paper, multiple representations
for the components are analysed, and a bounded-caching system is developed
to avoid memory overhead. A score is assigned to each component based on
how many times they get requested, and when the cache becomes full, all
entries with a score lower than a threshold are removed.

Ganak is built upon sharpSAT; hence, it incorporates all its components
and adds several new features [Sha+19]. One of Ganak’s main features is
probabilistic component caching: it uses a special kind of hash function that
takes less memory but has a small (bounded) probability of producing false
positive cache hits. Ganak also enhances the VSADS branching heuristics
by adding the cache state into the scoring of each variable. This new heuris-
tic aims to improve the cache-hit ratio of Ganak by branching on variables
that have not appeared in recently added cache components. Another key as-
pect of Ganak is the computation of minimum independent support for hard
instances. An independent support is a subset of variables that, when as-
signed, uniquely determines the value of the remaining variables. Hence,
when Ganak estimates that an instance is complex, it computes independent
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support as small as possible and branches on the variables it contains, which
can drastically reduce the size of the search space.

sharpSAT-TD is another model counter built upon sharpSAT; its main
addition is the integration of tree decomposition into the branching heuristic.
A tree decomposition of a graph is a tree whose nodes are sub-sets of the
graph’s nodes. For clarity, we denote by bag the nodes of the tree decom-
position. A tree decomposition must also respect the three following condi-
tions: 1. Each node of the graph must appear in a bag, 2. There must be a
bag containing the source and target nodes of each edge in the graph, and
3. For each node of the graph, the sub-tree composed of all bags containing
it must be connected. sharpSAT-TD leverages the tree decomposition of a
formula’s primal graph (i.e., a graph with nodes representing boolean vari-
ables and there is an edge between two variables if they appear in a clause
together) to help decompose the formula into independent components. The
idea is that branching on variables appearing near the root of the decompo-
sition leads to components with variables either in the left or right subtree
of the decomposition. GPMC is another solver based on the same ideas as
sharpSAT-TD [SHS17].

The projMC solver [LM19] uses another approach to solve the projected
model counting problem. It is based on disjunctive decomposition: To compute
the projected count of a formula 𝐹 (over projected variables P ), projMC first
computes a disjunctive deterministic form for 𝐹 with respect to P . Such a
form is a set of boolean formulas 𝜑1, . . . , 𝜑𝑘 that are mutually exclusive (𝜑𝑖 ∧
𝜑 𝑗 = ⊥ for 𝑖 ≠ 𝑗 ) but disjunctively valid (∨𝑘𝑖=1𝜑 = ⊤). These two properties
imply that the projected model count of 𝐹 can be computed as

∑𝑘
𝑖=1 𝐹 ∧𝜑𝑖 . By

carefully selecting the disjunctive deterministic form, each formula 𝐹 ∧ 𝜑𝑖 is
easier to count than 𝐹 .

2.1.4 Model Counting by Knowledge Compilation

All search-based model counters presented take a literal-weighted boolean
formula as input and return its model count. However, some settings, such
as NeSy AI, require computing many times the weighted model count of the
same formula. Let us consider the Sudoku classifier example from the NeSy
literature [Aug+22]: a convolutional neural network is employed to identify
handwritten digits within a Sudoku grid, and the goal is to verify the validity
of the grid. One way of modelling our NeSy system is as follows. The CNN
outputs, for each cell, a probability distribution representing the probability
that the digit in the cell corresponds to each of the nine possibilities. There
are nine variables 𝐵1

𝑖 𝑗 , . . . , 𝐵
9
𝑖 𝑗 per cell (𝑖, 𝑗), such that 𝐵𝑘𝑖 𝑗 = ⊤ means that the

digit in cell (𝑖, 𝑗) is 𝑘 . The weight of each variable 𝐵𝑘𝑖 𝑗 (1 ≤ 𝑘 ≤ 9) is given
by the output of the CNN. LetB be the set of boolean variables for every cell
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of the Sudoku grid; the boolean formula 𝐹 encoding the Sudoku constraints
is constructed from pairwise binary inequality (i.e., ¬𝐵 ∨ ¬𝐵′ for 𝐵, 𝐵′ ∈ B)
for the variables on the same row, the same column, and in the same square.
In this setting, the weighted model count of 𝐹 represents the probability that
the Sudoku grid is valid, given the CNN’s predictions.

Let us assume a typical setting in which the CNN is learned using gradi-
ent descent. A training set with filled Sudoku grids, labelled as valid or not, is
available in such a setting. The goal is then to have a weighted model count of
1 for the valid Sudoku grids and 0 for the others. Computing the count with
search-based model counters has two significant limitations. First, comput-
ing the weighted model count each time from scratch is inefficient and time-
consuming. Indeed, computing the count with a search-based model counter
entails numerous operations (e.g., constraint propagation, component detec-
tion) and exploring unsatisfiable parts of the search space. However, the for-
mula’s set of models remains unchanged during the learning process, and in
our example, the models are the same for every sample in the training set.
Hence, it is inefficient to recompute the models each time.

In addition, the loss used for gradient descent is computed on the out-
put of the counting algorithm; hence, backpropagation must be performed
through the logical constraints and then only through the CNN. However,
search-based model counters only return a count; it is not possible to do such
backpropagation.

A solution to these problems is to solve the model counting problem with
Knowledge Compilation (KC) techniques. In model counting, knowledge com-

pilers (or simply compilers) are algorithms that take a CNF formula as input
and translate it to a target language. In the next section, we explain what a
language is; the intuition is that compilers represent all the models of a CNF
formula in a compact form, often as a diagram. Moreover, this representation
can be used to compute the formula’s model count; hence, when the weights
change, it can still be used to calculate the new count. Finally, the repre-
sentations considered in this work are differentiable; hence, the whole NeSy
system can be learned end-to-end using automatic differentiation tools. Al-
though we showcased the utility of knowledge compilers on NeSy systems,
modern compilers are competitive with state-of-the-art search-based model
counters. They can be used as standalone tools to compute a formula’s count
only once.

2.1.4.1 Existing Target Languages for Knowledge Compilation

In the context of KC, a language is a means of representing knowledge that
supports operations within a given level of complexity. For example, the in-
put language in our work is the language of propositional formulas in CNF,
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and the operation of computing their weighted model count is #𝑃-Complete.
A review of popular target languages has been done by Darwiche and Mar-
quis, analysing them on two axes: their succinctness and the queries they
support in polynomial time[DM02]. This work focuses on model counting
problems, so we limit our description to languages that support such queries
in linear time. To give an idea of the compilation process, let us show how to
encode the models of a propositional formula as a Binary Decision Diagram
(BDD) [Bry86].

Example: Model Counting Using Binary Decision Diagram
Let 𝐹 = (𝐴 ∨ ¬𝐵) ∧ (¬𝐴 ∨ 𝐶 ∨ 𝐷) ∧ (¬𝐴 ∨ ¬𝐶) for which we know,
from previous examples, that #𝑆𝐴𝑇 (𝐹 ) = 6. A BDD is a rooted, directed,
acyclic graph in which each node represents a decision variable (i.e., 𝐹 ’s
variables), and edges represent a choice (i.e., assigning ⊤ or ⊥). Below is
a BDD encoding 𝐹 ’s interpretations: each node is labelled with a boolean
variable, solid outgoing edges represent an assignment to ⊤, dashed edges
an assignment to ⊥, and leaves are labelled with ⊤ or ⊥.

A

B B

C C

D D

⊥ ⊤

Each path in such a diagram represents a possibly partial assignment
to 𝐹 ’s variables that is satisfiable if it leads to the ⊤ leaf. For example, the
path 𝐴 = ⊥ (dashed edge outgoing from the root) and 𝐵 = ⊤ (solid edge)
leads to ⊥, which is inconsistent with 𝐹 ’s clauses. Indeed, the first clause
forbids such an assignment. Hence, the model count of 𝐹 is the number of
paths from the root to the ⊤ leaf, which is 6 as expected.

This example illustrates how knowledge compilation works: by repre-
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senting all assignments and, hence, models of a boolean formula, it is possible
to compute its model count in time linear in the size of the new representation.
Representing all models of a formula can, in practice, require exponentially
more space than the initial CNF formula; hence, it does not reduce the com-
plexity of model counting.

We have presented a conversion from a propositional formula to a binary
decision diagram; however, knowledge compilation is designed over more
generic languages. One of the most popular target languages for knowl-
edge compilation is the Negation Normal Form (NNF) language, defined as
follows [Bar82].

Definition 3 (NNF Language). Let B be a set of propositional variables. A

sentence in NNF is a rooted, directed, acyclic graph where each leaf is labelled

as ⊤, ⊥, 𝐵, or ¬𝐵 for 𝐵 ∈ B. Each internal node is labelled with ∧ or ∨, which
are interpreted as the logical operators in propositional logic.

Example: Representing Knowledge in NNF
The formula 𝐹 = (𝐴∨¬𝐵) ∧ (¬𝐴∨𝐶 ∨𝐷) ∧ (¬𝐴∨¬𝐶) can be represented
in NNF as follows.

∧

∨ ∨ ∨

𝐴 ¬𝐵 𝐶 𝐷 ¬𝐴 ¬𝐶

Hence, the CNF language is a subset of the NNF language, such that
each sentence in CNF has a depth of 2, the root is a conjunction node, and
its children are disjunction nodes.

The BDD language defines a sub-set of NNF sentences corresponding
to binary decision diagrams. The idea is that each decision node can be
transformed into a partial NNF diagram and combined. The following par-
tial NNF sentence shows how the root of our previously defined BDD is
transformed into NNF.
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∨

∧ ∧

𝐴 ¬𝐴... ...

When encountering a decision node in a decision diagram, both out-
going edges can lead to models (i.e., a ⊤ leaf); hence, models are in the left
or right child. Decision nodes in binary decision diagrams correspond to
∨-nodes in NNF. Then, when a choice is made for a variable (i.e., follow-
ing an edge in the decision diagram), the choice must be enforced in the
NNF. Hence, a ∧-node is used. The BDD language is a subset of the NNF
language in which each sentence’s root is structured, as shown above.

Target languages for compilers are sub-sets of the NNF language (i.e., they
respect the conditions in Definition 3) with additional structural constraints.
Formally defining each language derived from NNF is out of the scope of this
work; for a comprehensive review of such languages, see [DM02].

Two structural properties of NNF sentences are of particular interest for
model counting: decomposability [Dar01a] and determinism [Dar01b]. A ∧-
node of an NNF sentence is decomposable if its sub-sentences do not share
any variable. An NNF sentence is decomposable if each of its conjunction
nodes is decomposable. A ∨-node is deterministic if its sub-sentences are
contradictory, and anNNF sentence is deterministic if all its disjunction nodes
are deterministic. The d-DNNF language is a subset of NNF that satisfies both
the decomposability and determinism properties.

These two structural properties lead to two subsets of the NNF language
that are particularly interesting for model counting. The DNNF language is
the subset of NNF satisfying the decomposability property, the d-NNF lan-
guage is the subset of NNF satisfying the determinism property, and the d-
DNNF language is the subset of NNF satisfying both properties. It is known
that a sentence in d-DNNF supports the model counting operation in linear
time [DM02].

We have already seen that the BDD language imposes a particular struc-
ture on its nodes; the language of Ordered Binary Decision Diagram (OBDD)
further imposes an order on the variables. If a variable has a smaller order
than another, it must appear before it in the OBDD [Bry86]. OBDDs respect
the determinism and decomposability properties; hence, OBDD is a sub-set
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of d-DNNF. One of the main advantages of OBDD, compared to d-DNNF, is
that they are canonical. Given an ordering, exactly one OBDD representing
the initial boolean formula exists using this ordering. Hence, from a practi-
cal point of view, computing an optimal OBDD can be reduced to finding an
optimal ordering for the variables. Moreover, OBDD can be combined using
any boolean operator in polynomial time, leading to straightforward com-
pilation algorithms. Other types of languages based on decision diagrams
have been proposed in the literature (e.g., [Bar+14; DPV20]). Interestingly,
knowledge compilation to decision diagrams extends beyond propositional
logic and model counting; it has been extensively used to solve combinatorial
optimisation problems (e.g., [Ber+16; Kor+13]).

More recently, a new representation, Sentential Decision Diagrams, has
been proposed as a compromise between d-DNNF and Ordered Binary Deci-
sionDiagrams [Dar11]. This representation is based on two structural proper-
ties of NNF: structural decomposability [PD08] and strongly deterministic de-
compositions [PD10]. Structural decomposability imposes a stronger require-
ment than decomposability on which variable can appear in sub-sentences of
∧-nodes. In addition to not sharing any variables, the variables must be parti-
tioned according to the structure of a predefined variable tree (vtree). A DNNF
respecting a vtree is called a structured DNNF. Structured DNNF induces a de-
composition of the boolean function they represent as𝑛 pairs of sub-functions
𝑔𝑖 ∧ℎ𝑖 (1 ≤ 𝐼 ≤ 𝑛). Such a decomposition is strongly deterministic if and only
if 𝑔𝑖 ∧𝑔 𝑗 is inconsistent for all 𝑖 ≠ 𝑗 . A key aspect of SDDs is that, similarly to
OBDDs, they are canonical and can be combined in polynomial time. Hence,
similarly to OBDDs, the main challenge in compiling SDDs is to find an opti-
mal vtree. Probabilistic SDDs (PSDDs) have been proposed as a probabilistic
extension of SDDs [Kis+14]; instead of logical decision nodes, a PSDD has
probabilistic decision nodes, where the possible choices define a probability
distribution.

Other languages than NNF exist to perform tractable model counting. For
example, it has been proposed to use affine clauses (i.e., XOR constraints) in
diagram-based languages to perform model counting [Kor+13]. More pre-
cisely, Koriche et al. defined multiple languages based onAffine Decision Trees

(ADT). ADT are directed acyclic graphs in which leaves are labelled with
boolean constants (i.e., ⊤ or ⊥) and internal nodes are either conjunctions,
disjunctions, or affine clauses. Similarly to sub-languages of NNF; imposing
structural constraints on ADT yield sub-languages on which model counting
can be performed in linear time (over the trees size).
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2.1.5 Literature Review of Knowledge Compilers

As for search-basedmodel counters, several compilation algorithms have been
developed over the years. A first key observation made by Huang and Dar-
wiche is that the trace of DPLL-style search-based model counters corre-
sponds to a d-DNNF sentence [HD07]. Hence, any such model counter can
be converted to a knowledge compiler. An example of such a compiler is
Dsharp, which leverages thesharpSAT search-basedmodel counter [Mui+10].
D4 is another tree-search-based compiler and shares many similarities with
Dsharp [LM17a]. Its main improvement consists of smarter decomposition
schemes: independent components are not computed at each decision node,
and the solver focuses on the decomposition quality, minimising the time
spent decomposing the formula.

As explained in the previous section, SDDs have been designed to offer
an alternative to OBDDs. In particular, an apply operator can be defined for
SDDs that work similarly to the operator for decision diagram [Dar11]. Given
two SDDs 𝑠1 and 𝑠2, the apply operator can create an SDD 𝑠 representing
either the conjunction or disjunction of 𝑠1 and 𝑠2. Hence, creating an SDD
from a CNF formula is possible by first converting each clause to an SDD
and combining them using the apply operator. Such compilation is called
bottom-up since it starts from the clauses to construct a diagram for the whole
formula.

Later, an improved bottom-up compilation algorithm has been proposed
for dynamically minimising SDDs [CD13]. Since SDDs are canonical, given a
vtree, this new method proposes an alternative way of exploring the space of
vtrees. Choi and Darwiche propose two operations for exploring such space:
rotating a vtree and swapping nodes. Then, their algorithm greedily searches
for a good vtree using these operations. There also exist top-down compilers
for SDDs; the idea is to start from the whole formula, compile parts of it and
then combine them together [OD15].

Recently, a new representation, called CCDD, has been designed based on
the notion of literal equivalence [LMY21]. Two literals are equivalent if in-
terverting them results in a logically equivalent formula. Lai, Meel, and Yap
show that CCDD is a generalisation of d-DNNF which supports linear time
model counting and proposes ExactMC, an exact compiler to this new lan-
guage.

2.1.6 Approximate Model Counting

Given the intrinsic complexity of model counting, several methods have been
developed to avoid exploring the whole search space. In particular, a popular
approach is to compute an approximate count; that is, a count that may differ
from the true count but with an error bounded in some way. This section
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reviews some of the most popular approaches.
ApproxCount is an approximate model counter based on sampling mod-

els of the boolean formula to estimate its count [WS05]. However, this early
approach requires a (near-)uniform sampling to be effective, which is known
to be a complex problem. Moreover, ApproxCount does not guarantee the
quality of its estimation. SampleCount is another approximatemodel counter
based on sampling solutions from a boolean formula [Gom+07]. However, it
does not directly use the samples to estimate the model count. Instead, the
samples are used to select an assignment of a variable that divides the solution
space evenly (i.e., a variable that appears as positively as it does negatively in
the models). The authors demonstrate that it is possible to provide a statisti-
cal guarantee on the lower bound returned by SampleCount and that it does
not require (near-)uniform sampling to function effectively. PartialKC is an
approximate model counter based on partial compilation to CCDD [LMY22].
It iteratively produces partial diagrams that are increasingly larger; hence, a
key advantage of PartialKC is that it detects when the CCDD is complete
and returns the exact count.

Another popular type of approximate algorithmproduces (𝜀, 𝛿)-approximations,
also called Probably Approximately Correct (PAC) approximations in the liter-
ature [Val84], defined as follows.

Definition 4 ((𝜀, 𝛿)-approximation). Let 𝑐 be the true (weighted) model count

of a boolean formula, 𝑐 an approximation of 𝑐 , and 𝜀 > 0 an error factor. 𝑐 is an

𝜀-approximation of 𝑐 if and only if the following inequalities hold:

𝑐

1 + 𝜀 ≤ 𝑐 ≤ 𝑐 (1 + 𝜀) .

Moreover, for 0 ≤ 𝛿 ≤ 1, 𝑐 is an (𝜀, 𝛿)-approximation if the following in-

equality holds:

𝑃

[ 𝑐

1 + 𝜀 ≤ 𝑐 ≤ 𝑐 (1 + 𝜀)
]
≥ 1 − 𝛿

Ganak is designed to compute (0, 𝛿)-approximations due to its proba-
bilistic cache. However, it has been observed that it often returns the actual
model count. One of the most popular approximate model counters com-
puting (𝜀, 𝛿)-approximations is ApproxMC [CMV16; SM19; SGM]. The main
idea behind ApproxMC is to use hash functions to divide the solution space
into cells containing the same number of solutions. Then, when the cells are
small enough, an exact model counter is used to calculate the model count of
a single cell. Then, this count is multiplied by the number of cells to produce
an (𝜀, 𝛿)-approximation of the true model count. The primary challenge in
ApproxMC is to ensure that the correct hash function is employed, thereby en-
suring the final count meets the required guarantees. WeightMC is based on
the same ideas as ApproxMC but targets weighted model counting [Cha+14].
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2.2 Probabilistic Inference

A probabilistic model can be seen as modelling a joint probability distribution
over a set of random variables. Several tasks can be defined for such models,
such as computing the probability of a partial observation of the variables or
determining their most likely assignment. Finding the solution to such tasks
is called probabilistic inference, and many model- and task-dependent algo-
rithms exist to perform it. However, over the last two decades, SAT-based
methods have emerged as a unified approach to addressing various proba-
bilistic inference tasks. This section shows how some probabilistic inference
tasks can be reduced to weighted model counting. We first explain the in-
tuition behind this reduction before detailing how it is implemented for the
probabilistic inference tasks used in our experiments.

2.2.1 Reducing Probabilistic Inference to Model Counting

To explain the similarity between probabilistic inference and model count-
ing, let us consider Example 2.2.1 in which we construct a small probabilistic
model and perform inference with a straightforward approach.

Example 10: Probabilistic Inference by World Enumeration
Let us consider a small probabilistic model containing the following vari-
ables: smokes, bronchitis, and dyspnoea. Ẇe assume that having
dyspnoea depends on both smoking and having bronchitis, which we as-
sume are independent events. A probability distribution is defined as fol-
lows. First, we define the distribution of the two independent variables.

■ 𝑃 (smokes = yes) = 0.2, 𝑃 (smokes) = sometimes) = 0.1, 𝑃 (smoking =

no) = 0.7

■ 𝑃 (bronchitis = yes) = 0.1, 𝑃 (bronchitis = no) = 0.9

Now, we can define the distribution for the variablebronchitis, which
depends on the two other variables.

𝑃 (dyspnoea = yes) =

1.0 if smokes = yes and bronchitis = yes
0.5 if smokes = sometimes and bronchitis = yes
0.0 otherwise

𝑃 (dyspnoea = no) =

0.0 if smokes = yes and bronchitis = yes
0.5 if smokes = sometimes and bronchitis = yes
1.0 otherwise
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The joint distribution over all three variables can be represented by an ar-
ray that contains all possible combinations of the variables. Each possible
world has an associated probability computed by multiplying the result of
each probability distribution.

Let us assume the following query: What is the probability that a per-
son has dyspnoea and smokes? The simplest way to answer this query is
to look into the joint probability table, select all entries corresponding to
"smokes = yes, Dyspnoea = yes," and sum their probabilities. The entries
corresponding to the query are highlighted in green, and the query has a
probability of 0.02. The entries for another query, "What is the probability
of not having dyspnoea?" are highlighted in pink.

Smokes Bronchitis Dyspnoea Proba.

yes yes yes 0.02
yes yes no 0.0
yes no yes 0.0
yes no no 0.18
Sometimes yes yes 0.005
Sometimes yes no 0.005
Sometimes no yes 0.0
Sometimes no no 0.09
no yes yes 0.0
no yes no 0.07
no no yes 0.0
no no no 0.63

This example illustrates that weighted model counting and probabilis-
tic inference share a common structure. Both approaches enumerate possi-
ble worlds (i.e., possible assignments to variables, either binary or random),
select the ones satisfying a set of constraints (i.e., a boolean formula or a
query), and sum their weights. Hence, it has been proposed in the literature
to reduce probabilistic inference to (projected) weighted model counting us-
ing the process illustrated in Figure 2.1. First, the probabilistic model and the
query are transformed into a literal-weighted CNF formula 𝐹 using an encod-

ing algorithm. This encoding part is specific for each model and not unique;
a given probabilistic model can be encoded in multiple ways using proposi-
tional logic. Moreover, the encoding must ensure that the weighted model
count of 𝐹 corresponds to the query’s probability given the model. Such a
guarantee is obtained by weighting the literals using the model’s distribution
and transforming its constraints (e.g., smoking and having bronchitis both
influence having dyspnoea) into clauses. Then, any weighted model counter
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Probabilistic Model𝑀 Query 𝑄

Encoding Algorithm

Formula F (CNF)

Model Counting Algorithm

𝑃 (𝑄 | 𝑀)

Figure 2.1: Process for solving probabilistic inference task using Weighted
#∃SAT.

can be used on 𝐹 to compute the probability of the initial query.
Usingweightedmodel counting instead of specialised algorithms presents

some benefits. First, decomposing the inference process into two steps — en-
coding and counting — allows for a unified approach to multiple probabilistic
models and queries. Moreover, the encoding and counting algorithms are
independent; hence, improving one of these two phases enhances the qual-
ity of the inference process. For example, modifying the pre-processing of the
counting algorithmmay improve performance without altering the encoding.
Finally, using Knowledge Compilation, the inference task can be represented
as diagrams that can be used in other pipelines, such as NeSy frameworks.

We now define the inference tasks used in our experiments. We first
formally define the probabilistic models and the inference tasks considered.
Then, we show how they can be encoded into a literal-weighted CNF formula.

2.2.2 Bayesian Networks

Bayesian networks (BNs) are models that belong to the category of probabilis-
tic graphical models. A BN uses a graph structure to represent dependencies
between random variables. In particular, a BN is a directed acyclic graph, and
each node is associated with a conditional probability distribution.

Example: Bayesian Networks
A Bayesian network can be represented as a graph. Each node repre-
sents a random variable, and the edges represent the dependencies (or lack
thereof) of one variable on another. For example, the following BN repro-
duced from [LS88] has eight variables.
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asia

smoke

tub

lung

either

bronc

xray

dysp

Each node is associated with a Conditional Probability Table (CPT) that
defines the node’s probability distribution. Such distributions are condi-
tional on the node’s parents (e.g., 𝑃 (bronc | smoke)) if they exist. Set-
ting probabilities to 1.0 and 0.0 in a CPT makes encoding determinism in a
Bayesian network possible. For example, the CPTs for nodes asia, bronc,
and either are listed below.

asia
⊤ ⊥
0.1 0.99

bronc
smoke ⊤ ⊥
⊤ 0.6 0.4
⊥ 0.3 0.7

either
tub lung ⊤ ⊥
⊤ ⊤ 1 0
⊤ ⊥ 1 0
⊥ ⊤ 1 0
⊥ ⊥ 0 1

Let us now formally define a Bayesian Network. Let (V ,𝚽) be a Bayesian
network over random variables V . The probability tables are represented
using theweight functions𝚽 andΦ𝑉 ∈ 𝚽 is the table associatedwith node𝑉 ∈
V . The scope of Φ𝑉 is the set of variables used in 𝑉 ’s CPT and is defined by
scope(Φ𝑉 ) = {𝑉 ,𝑌1, . . . , 𝑌𝑝 } where 𝑌1, . . . , 𝑌𝑝 are the parents of 𝑉 . It follows
from our definition of scope that a Bayesian network can be seen as a directed
graph. To be valid, the variables’ scope must define an acyclic graph.

Using these notations, the weight function of 𝑉 ∈ V can be defined as
Φ𝑉 :

>
𝑍 ∈scope(Φ𝑉 ) dom(𝑍 ) ↦→ [0, 1]. The two following properties hold since

the weight functions must define valid probability distributions:

1. Φ𝑉 (𝑧) ∈ [0, 1] ∀𝑧 ∈
>

𝑍 ∈ scope(Φ𝑉 ) dom(𝑍 ),

2.
∑

𝑣∈dom(𝑉 ) Φ(𝑣,𝑦1, . . . , 𝑦𝑛) = 1 ∀(𝑦1, . . . , 𝑦𝑝) ∈ dom(𝑌1) × · · ·×dom(𝑌𝑝).

Let v be an assignment to the network’s variable and

𝜋𝑉 :
?
𝑌 ∈V

dom(𝑌 ) ↦→
?

𝑍 ∈scope(Φ𝑉 )
dom(𝑍 )
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be a projection operator from the whole set of variables to the subset of vari-
ables in scope(Φ𝑉 ). Then, the probability of the assignment is computed as
follows.

𝑃 (V = v) =
∏
𝑉 ∈V

Φ𝑉 (𝜋𝑉 (v))

In other words, in Bayesian networks, the joint probability of the vari-
ables is factorised as a product of conditional probabilities. A natural task in
such networks is to compute the probability of a partial observation of the
networks’ variables, called evidence.

Inference Task 1 (Probability of Evidence (PR)). Let (V ,𝚽) be a Bayesian

network, E ⊆ V a set of observed variables with value e, and X = V \E the

remaining variables. The PR task is to compute 𝑃 (E = e), which is given by the
following formula:

𝑃 (E = e) =
∑︁

x∈>
𝑋 ∈X dom(𝑋 )

𝑃 (E = e,X = x)

=
∑︁

x∈>
𝑋 ∈X dom(𝑋 )

∏
𝑉 ∈V

Φ𝑉 (𝜋𝑉 (e ∪ x))

In the above formula, the ∪ operator denotes the concatenation of the assign-

ment.

Notice how Task 1 fits our intuitive explanation of probabilistic inference.
Remember that a possibleworld for a Bayesian network is an assignment to all
its variables. Hence, by summing all the possible assignments forX = V \E,
all partial worlds on X are considered and then extended into a complete
possible world by the imposed assignment E = e.

2.2.2.1 Solving the PR Task with Toulbar2

Before explaining how Bayesian networks can be encoded in CNF, let us
briefly describe the Toulbar2 solver and explain its connection to Bayesian
networks as we utilise it in our experiments. Toulbar2 is a solver for Cost
Function Networks (CFN). Let X be a set of discrete variables; in a CFN, the
constraints are expressed as a set of function F over variables. A function
𝐹Y ∈ F is associated with a subset Y ⊆ X of the variables and assigns a
weight to each possible assignment y to them. The weight of an assignment
v of the variable is defined as the sum of each function evaluation with v
(projected on the variables in the function’s scope).

The similarity with Bayesian networks is evident: BNs can be encoded
as CFN by taking V = X , 𝚽 = F , and using log-probabilities. Hence, solv-
ing Inference task 1 with Toulbar2 is straightforward: the solver finds all
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assignments respecting the constraints and sums their weight. Many algo-
rithms are implemented in Toulbar2; detailing all of them is outside the
scope of this work. However, at the core, Toulbar2 is a tree-search-based
solver: it recursively branches on a variable 𝑋 ∈ X , heuristically selects one
value 𝑥 of its domain, and asserts 𝑋 = 𝑥 . Then, it conditions the functions
based on this assignment and continues until a complete assignment is found.

2.2.2.2 CNF Encoding

Various encoding algorithms exist to transform a Bayesian network into a
literal-weighted boolean formula (e.g.,[Dar02; CD05; CD06; CD08; Bar+16]).
This section reviews the first encoding proposed by Darwiche [Dar02] and
then explores some of its extensions.

Variables Two types of variables are used in the encoding: indicator vari-
ables are used to indicatewhich values a node takes, while parameter variables
indicate which entry in the CPT is active. More formally, given a BN (V ,𝚽),
the following boolean variables are created.

𝜆𝑣 ∈ {⊤,⊥} ∀𝑣 ∈ dom(𝑉 ), ∀𝑉 ∈ V (2.1)

𝜃z ∈ {⊤,⊥} ∀z ∈
?

𝑍 ∈scope(Φ𝑉 )
dom(𝑍 ), ∀𝑉 ∈ V (2.2)

Since these encodings have been designed for non-projected weighted
model counting, each literal must be assigned a weight. Intuitively, the en-
coding is such that the weight of an interpretation of the boolean formula
corresponds to the weight of the associated possible world of the Bayesian
network. Remember that the weight of a complete assignment of a BN’s
variables is given by multiplying all CPTs’ entries corresponding to the as-
signment. Hence, the probabilities defined in the CPTs must be given to the
parameter variables. The following weighting scheme ensures that, given the
correct set of clauses, each interpretation has the same weight as its corre-
sponding possible world. Note that indicator variables and negative literals
are assigned a unit weight; this ensures that they do not impact the probabil-
ity, as 1 is neutral for multiplication.

𝜔 (𝜆𝑣) = 𝜔 (¬𝜆𝑣) = 1 ∀𝑣 ∈ dom(𝑉 ), ∀𝑉 ∈ V (2.3)

𝜔 (𝜃z) = Φ𝑉 (z) ∀z ∈
?

𝑍 ∈scope(Φ𝑉 )
dom(𝑍 ), ∀𝑉 ∈ V (2.4)

𝜔 (¬𝜃z) = 1 ∀z ∈
?

𝑍 ∈scope(Φ𝑉 )
dom(𝑍 ), ∀𝑉 ∈ V (2.5)
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Clauses The clauses ensure that any interpretation of 𝐹 corresponds to a
possible world of the Bayesian network. The following clauses impose that
exactly one value must be selected for each node 𝑉 ∈ V .

∨𝑣∈dom(𝑉 )𝜆𝑣 ∀𝑉 ∈ V (2.6)
¬𝜆𝑣𝑖 ∨ ¬𝜆𝑣𝑗 ∀𝑣𝑖 , 𝑣 𝑗 ∈ dom(𝑉 ) (𝑣𝑖 ≠ 𝑣 𝑗 ), ∀𝑉 ∈ V (2.7)

Clause (2.6) corresponds to a at least one constraint and Clauses (2.7) en-
codes an at most one constraint.

Finally, the last set of clauses encodes the BN’s constraints; when all nodes
in a CPT’s scope have been assigned (i.e., their indicator variables are fixed),
then the corresponding parameter variable must be set to ⊤.

𝜆𝑣 ∧ 𝜆𝑦1 ∧ . . . ∧ 𝜆𝑦𝑝 ⇔ 𝜃𝑣𝑦1 ...𝑦𝑝 ∀(𝑣,𝑦1, . . . , 𝑦𝑝) ∈
?

𝑍 ∈scope(Φ𝑉 )
𝑑𝑜𝑚(𝑍 )

∀Φ𝑉 ∈ 𝚽 (2.8)

Evidence The evidences are encoded using the indicator variables with the
following clauses:

𝜆𝑥𝑖 ∀𝑥𝑖 ∈ e (2.9)

It has been proved that with such an encoding, it is possible to solve In-
ference task 1 using weighted model counting [Dar02].

Theorem 1. Let (V ,𝚽) be a Bayesian network, E ⊆ V a set of evidence,

and e an assignment to E. Let 𝐹 be a boolean formula defined over the set of

variables defined by Equations (2.1)-(2.2), using the weighting scheme defined

by Equations (2.3)-(2.5), and the clauses defined by Equations (2.6)-(2.9). Then,
the following equality holds.

𝑃 (E = e) = weighted #SAT(𝐹 )

Example: Bayesian Networks (cont.)
As an example, let us show how a small part of our example network can
be encoded as a boolean formula. We will define the variables and clauses
for the node asia and bronc. The latter requires we define some variables
for the smoke node. For conciseness, we denote the network’s nodes by
the first letter of the variables they represent.

First, we have the following indicator variables, one for each node’s
value. For example, if the variable 𝜆𝐴⊤ is true, it indicates that the person
has been to Asia.

𝜆𝐴⊤, 𝜆𝐴⊥, 𝜆𝐵⊤, 𝜆𝐵⊥, 𝜆𝑆⊤, 𝜆𝑆⊥
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Moreover, the following six parameter variables (one for each CPT entry)
are required.

𝜃𝐴⊤, 𝜃𝐴⊥, 𝜃𝐵⊤𝑆⊤, 𝜃𝐵⊥𝑆⊤, 𝜃𝐵⊤𝑆⊥, 𝜃𝐵⊥𝑆⊥

Their weights are defined following the CPTs’ entries.

𝜔 (𝜃𝐴⊤) = 0.01 𝜔 (𝜃𝐵⊤𝑆⊤) = 0.6 𝜔 (𝜃𝐵⊤𝑆⊥) = 0.3
𝜔 (𝜃𝐴⊥) = 0.99 𝜔 (𝜃𝐵⊥𝑆⊤) = 0.4 𝜔 (𝜃𝐵⊥𝑆⊥) = 0.7

Finally, one clause is defined per CPT entry.

𝜆𝐴⊤ ⇔ 𝜃𝐴⊤ 𝜆𝐵⊤ ∧ 𝜆𝑆⊤ ⇔ 𝜃𝐵⊤𝑆⊤ 𝜆𝐵⊥ ∧ 𝜆𝑆⊤ ⇔ 𝜃𝐵⊥𝑆⊤

𝜆𝐴⊥ ⇔ 𝜃𝐴⊥ 𝜆𝐵⊤ ∧ 𝜆𝑆⊥ ⇔ 𝜃𝐵⊤𝑆⊥ 𝜆𝐵⊥ ∧ 𝜆𝑆⊥ ⇔ 𝜃𝐵⊥𝑆⊥

Assuming that all CPTs of the network have been encoded that way, the
query 𝑃 (dysp = ⊤) can be encoded by adding the following unit clause
𝜆𝐷⊤ .

The encoding presented above serves as the basis for various other encod-
ings, and, using the same naming convention as in [CD08], will be denoted
ENC1. One of the crucial optimisations for scalable model counting is en-
coding the BN’s local structure into the CNF formula [CD05]. In particular,
the encoding ENC3 uses only one parameter variable to represent multiple
entries of the same CPT with the same weights, which can drastically reduce
the number of variables in the final formula. Decomposing a problem into
independent sub-problems is a crucial aspect of model counting. However,
it has been shown that classical counting algorithms sometimes fail to de-
tect these sub-problems due to the encoding [CD06]. The encoding ENC4
is designed to enhance decomposability (while conserving the advantages of
ENC3) by reducing the clauses using prime applicants. Finally, a recent en-
coding, called ENC4LINP, proposed to encode implicitly the most frequent
weights in each CPT as well as log-encodings to reduce the size of the result-
ing formula [Bar+16].

2.2.3 Probabilistic Graphs

Graph structures can model many real-world situations, such as road net-
works, social interactions, or electrical grid installations. In such contexts,
computing the reliability of these systems (e.g., the probability that a power
plant remains connected to a hospital or the spread of misinformation in so-
cial networks) can be crucial. In this section, we explore how probabilistic
graphs can be used to model such situations and how to encode reliability
queries using propositional formulas. Let𝐺 = (V ,E) be a graph (directed or



32 Chapter 2. Background Knowledge

undirected) with nodes V = {𝑉1, . . . ,𝑉𝑛} and edges E = {𝐸1, . . . , 𝐸𝑚}. More-
over, each edge 𝐸 ∈ E has an associated probability 𝑃 (𝐸) of being active.

Example: Probabilistic Graph: Electrical network
As a running example, consider the following graph, which represents a
simplified electrical network for a small city. In this example, two nodes (in
blue) generate the electricity and send it to target nodes (in red) through the
network, passing through relays (grey nodes). Each edge is annotated with
its probability of being functional after some natural event (e.g., flooding,
hurricanes, earthquakes).

Gen. 1 A

BGen. 2 C

Hosp.

School

0.2

0.4

0.8

0.35

0.6

0.1

0.05

0.5

This work focuses on a reliability problem called (𝑆 − 𝑇 )-reliability. In
such a problem, the goal is to compute the probability that a source node
𝑆 ∈ V is connected to a target node 𝑇 ∈ V . The probability that 𝑆 and 𝑇 are
connected can be computed from the graph’s possible worlds. LetX ⊆ E be
the subset of edges that are still functional, then the probability of this world
is given by

𝑃 (X) =
( ∏
𝐸∈X

𝑃 (𝐸)
)
×

(∏
𝐸∉X

(1 − 𝑃 (𝐸))
)
.

A probabilistic graph defines a distribution over non-probabilistic graphs.
Verifying whether each possible world contains an (S-T) path is easy with
classical graph algorithms. Let us denote X |= path(𝑆,𝑇 ) the fact that there
exists an (S-T)-path in the graph (V ,X), then the problem of reliability esti-
mation is as follows.

Inference Task 2 (Reliability Estimation). Let 𝐺 = (V ,E) be a weighted

graph, 𝑆 ∈ V a source node, 𝑇 ∈ V a target node, and 𝑃 (𝐸) the weight of each
edge 𝐸. The task of reliability estimation is to compute the probability that an

(S-T) path exists in 𝐺 . It is defined as follows:

𝑃 (path(𝑆,𝑇 )) =
∑︁

X⊆E |X |=path(𝑆,𝑇 )
𝑃 (X).
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2.2.3.1 CNF Encoding

Contrary to Bayesian networks, the encoding presented in this section re-
lies on using projected weighted model counting [Due+17]. This encoding
is special because it is not used to compute the required probability but the
complementary probability (i.e., the probability that the source and the target
are not connected). We first present the encoding, and then show that using
unprojected weighted model counting or encoding directly the query do not
work.

Variables The set of projected variables used to compute the probability
of an interpretation are linked to the edges and represent the fact that an
edge is active. On the other hand, to help formalise the problem constraints,
one boolean variable is used per node. They are used to indicate if a node is
connected to the source. The following variables are defined:

𝜆𝑉 ∈ {⊤,⊥} ∀𝑉 ∈ V (2.10)
𝜃𝐸 ∈ {⊤,⊥} ∀𝐸 ∈ E (2.11)

The set of projected variables is defined asP = {𝜃𝐸 | 𝐸 ∈ E}. The weight
of the projected variables is given by the edges’ probabilities in the graph;
hence, we have ∀𝜃𝐸 ∈ P : 𝜔 (𝜃𝐸) = 𝑃 (𝐸) and 𝜔 (¬𝜃𝐸) = 1 − 𝑃 (𝐸).

Clauses The clauses must encode the constraint that, given a choice for the
edges, there is no path between 𝑆 and𝑇 . The encoding relies on the transitive
property of the graph’s paths. That is, if the source is linked to a node𝑉 ∈ V
and there is an edge between 𝑉 and 𝑉 ′ ∈ V , then there is a path from the
source to 𝑉 ′. The following clauses encode that behaviour.

𝜆𝑉1 ∧ 𝜃𝐸 ⇒ 𝜆𝑉2 ∀𝐸 = (𝑉1,𝑉2) ∈ E (2.12)

The query Finally, given a source 𝑆 and a target 𝑇 , the query on the prob-
abilistic graph can be encoded using the two following unit clauses.

𝜆𝑆 for a source node 𝑆 ∈ V (2.13)
¬𝜆𝑇 for a target node 𝑇 ∈ V (2.14)

Example: Probabilistic Graph: Electrical Network (cont.)
Let us encode our small example to compute the following query: What is
the probability that the first generator and the school are connected? First,
the following boolean variables are required for the nodes (we use 𝐺 , 𝐻 ,
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and 𝑆 to refer to the generators, the hospital, and the school, respectively).

𝜆𝐺1, 𝜆𝐺2, 𝜆𝐴, 𝜆𝐵, 𝜆𝐶 , 𝜆𝐻 , 𝜆𝑆 ∈ {⊤,⊥}

Next, we identify each edgewith a boolean variable using the nomenclature
𝜃from to. Hence, the following variables are defined.

𝜃𝐺1𝐴, 𝜃𝐺1𝐵, 𝜃𝐺2𝐵, 𝜃𝐴𝐻 , 𝜃𝐴𝐶 , 𝜃𝐶𝐴, 𝜃𝐵𝐶 , 𝜃𝐵𝑆 , 𝜃𝐶𝐻 , 𝜃𝐶𝑆 ∈ {⊤,⊥}

Finally, the following clauses encode the structure of the graph.

𝜆𝐺1 ∧ 𝜃𝐺1𝐴 ⇒ 𝜆𝐴 𝜆𝐵 ∧ 𝜃𝐵𝑆 ⇒ 𝜆𝑆 𝜆𝐶 ∧ 𝜃𝐶𝐻 ⇒ 𝜆𝐻

𝜆𝐺1 ∧ 𝜃𝐺1𝐵 ⇒ 𝜆𝐵 𝜆𝐵 ∧ 𝜃𝐵𝐶 ⇒ 𝜆𝐶 𝜆𝐶 ∧ 𝜃𝐶𝑆 ⇒ 𝜆𝑆

𝜆𝐺2 ∧ 𝜃𝐺2𝐵 ⇒ 𝜆𝐵 𝜆𝐴 ∧ 𝜃𝐴𝐻 ⇒ 𝜆𝐻

The query is encoded using the following two unit clauses: 𝜆𝐺1 and
¬𝜆𝑆 .

This encoding is easily extended to undirected graphs. Indeed, if the edges
are undirected, the transitivity property holds in both directions. That is,
if there is an active edge between a node 𝑋 and a node 𝑌 (i.e., 𝜃𝑋𝑌 = ⊤),
and either 𝑋 or 𝑌 is reachable from the source, then the other node is also
reachable from the source. For example, the following clauses encode the
edge between 𝑋 and 𝑌 .

𝜆𝑋 ∧ 𝜃𝑋𝑌 ⇒ 𝜆𝑌 𝜆𝑌 ∧ 𝜃𝑋𝑌 ⇒ 𝜆𝑋

The following theorem states that the encoding presented above is cor-
rect, and proof can be found in [Due+17].

Theorem 2. Let 𝐺 = (V ,E) be a probabilistic graph such that each edge

has an associated probability 𝑃 (𝐸) of being present. Moreover, let 𝑆 ∈ V be a

source node and 𝑇 ∈ V be a target node. Let 𝐹 be a boolean formula defined

over variables λ defined by Equation (2.10), θ defined by Equation (2.11) and
the clauses defined by Equations (2.12)-(2.14). Then, the probability of 𝑆 and 𝑇

being connected in 𝐺 is given by the following value: 1 − pwmc(𝐹, θ).

Two particularities of the encoding presented above are necessary: using
projected variables and solving the complementary connectivity problem. Let
us demonstrate how, without these two elements, the encoding presented
above would not work.
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Example 15: Non-working encodings for (𝑆 −𝑇 )-reliability
Let us consider the small network below, where 𝐴 is the source and 𝐷 is
the target.

A B

C

D
0.1

0.4

0.9

0.6

The following clauses encode the problem of computing the probability
that 𝐴 and 𝐷 are disconnected.

𝜆𝐴 ∧ 𝜃𝐴𝐵 ⇒ 𝜆𝐵 𝜆𝐵 ∧ 𝜃𝐵𝐶 ⇒ 𝜆𝐶 𝜆𝐵 ∧ 𝜃𝐵𝐷 ⇒ 𝜆𝐷

𝜆𝐶 ∧ 𝜃𝐶𝐷 ⇒ 𝜆𝐷 𝜆𝐴 ¬𝜆𝐷

Case 1: unprojected weightedmodel counting) Let the graph’s prob-
abilities assign weights to each 𝜃 variable, and let the weight of each 𝜆

variable be 1. Now, let us assume a DPLL-style solver which sets, in or-
der, 𝜃𝐴𝐵 = ⊤, 𝜃𝐵𝐶 = ⊥, and 𝜃𝐵𝐷 = ⊥. The first assignment forces 𝜆𝐵 = ⊤
while the others only remove clauses from the formula. Hence, the residual
formula obtained after the third assignment is

𝜆𝐶 ∧ 𝜃𝐶𝐷 ⇒ ⊥⇔ ¬𝜆𝐶 ∨ ¬𝜃𝐶𝐷

The truth table for that formula and the associated weights are shown
below.

𝜃𝐶𝐷 𝜆𝐶 weight

⊤ ⊤ 0.6
⊤ ⊥ 0.6
⊥ ⊤ 0.4
⊥ ⊥ 0.4

At that point, the assignments correspond to a world where 𝐴 and
𝐷 are disconnected; hence, 1 must be returned. However, the weighted
model count of the residual formula is 1.4 since only the assignment 𝜃𝐶𝐷 =

⊤, 𝜆𝐶 = ⊤ is not a model of the residual formula. Such a problem is avoided
when projected variables are used. The residual formula only has two pro-
jected models, 𝜃𝐶𝐷 = ⊤ and 𝜃𝐶𝐷 = ⊥, whose weighted sum is 1.
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Case 2: not encoding the complementary problem) Now let us con-
sider the impact of encoding the query using the clause 𝜆𝐷 instead of ¬𝜆𝐷
but with the projected variables as defined in the encoding (i.e., the θ vari-
ables). In such a case, during the first propagation, the two clauses imply-
ing 𝜆𝐷 are removed because an implication implying⊤ is always respected.
The residual formula is as follows:

𝜃𝐴𝐵 ⇒ 𝜆𝐵 𝜆𝐵 ∧ 𝜃𝐵𝐶 ⇒ 𝜆𝐶

Using the same reasoning as above, it is clear that any assignment on
𝜃𝐴𝐵 and 𝜃𝐵𝐶 can be extended by the assignment 𝜆𝐵 = 𝜆𝐶 = ⊤ to form a
model of this residual formula. Hence, we have pwmc(𝐹, θ) = 1, which is
incorrect. Using projected variables means we cannot directly encode the
query, as it does not constrain the problem.

2.2.4 Probabilistic Logic Programming with ProbLog

ProbLog is a probabilistic extension of the Prolog language; it consists of a
(deterministic) logic program (LP) and probabilistic facts [DKT07]. In that
sense, a ProbLog program defines a distribution over logic programs: an ele-
ment of the distribution is the logic program LP extended with a subset of the
probabilistic facts. Since ProbLog is an extension of Prolog, their syntaxes
are similar. A ProbLog program consists of a set of rules, defined using the
:- operator, which are logical implications. Like Prolog, the implications are
written from right to left; hence, the logical implication 𝐴 ∧ 𝐵 ∧ 𝐶 ⇒ 𝐷 is
written as follows.

D :- A,B,C.

Notice that commas replace the logical ∧ operator, and the dot at the end
finishes the clauses. Although negations can be added to the right-hand side
of the rules, this work only considers the setting in which each rule variable is
positive. We denote the left-hand side of the rule the head and its right-hand
side the implicant. In ProbLog, the head of a rule might contain multiple
variables annotated with probabilities. Such rules are called annotated dis-

junctions (AD) [VVB04]. For example, the following rule defines, in practice,
a probability distribution over three rules.

0.3::A; 0.5::B; 0.2::C :- D.

Such a rule can be understood as follows: if D is true, then A is true with
a probability of 0.3, B is true with a probability of 0.5, or C is true with a
probability of 0.2. In practice, this can be seen as encoding the tree following
rules: A :- D, P1., B :- D, P2., and C :- D, P3. with 𝑃 (𝑃1) = 0.3, 𝑃 (𝑃2) =
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0.5, and 𝑃 (𝑃3) = 0.2. The additional variables form a distribution, where
exactly one must be true, and their weights sum to 1. When one variable is
set to ⊤, the associated rule is active, and the other variables are set to ⊥,
deactivating their respective rules. Hence, an annotated disjunction can be
seen as defining a distribution over (deterministic) Prolog programs.

Finally, a ProbLog program can be queried using the query operator. Let
us show how Bayesian networks and probabilistic graphs can be encoded as
a ProbLog program.

Example 16: Bayesian Network and Reliability Estimation prob-
lems in ProbLog
The ProbLog program encoding the Bayesian network used in our previous
examples is shown below. Each probability table is encoded as a set of rules
(lines 2-26) followed by a query (line 28). The network’s distributions are
encoded using annotated disjunctions. Each rule of the program encodes a
row in a given CPT. Let us look more closely at some rules.

First, it can be seen that there is no implicant for asia (line 2) since
it has no parent in the network. Hence, these rules define probabilistic

facts. Next, the rules for the bronch variables (lines 12-13) are classical
annotated disjunctions. There is one AD per CPT row. The implicant of
each rule is the choice for the smoke variable (the only parent of bronch),
and the heads are annotated with the CPT probabilities. Finally, when a
CPT contains determinism, such as for either, the CPT can be encoded
using non-probabilistic rules (lines 15-18).

1 // CPT for Asia
2 0.01::asia_yes; 0.99::asia_no.
3 // CPT for tub
4 0.05::tub_yes; 0.95::tub_no :- asia_yes.
5 0.01::tub_yes; 0.99::tub_no :- asia_no.
6 // CPT for Smoke
7 0.5::smoke_yes; 0.5::smoke_no.
8 // CPT for lung
9 0.1::lung_yes; 0.9::lung_no :- smoke_yes;
10 0.01::lung_yes; 0.99::lung_no :- smoke_no;
11 // CPT for Bronch
12 0.6::bronch_yes_; 0.4::bronch_no :- smoke_yes.
13 0.3::bronch_yes; 0.7::bronch_no :- smoke_no.
14 // CPT for either
15 either_yes :- lung_yes, tub_yes.
16 either_yes :- lung_no, tub_yes.
17 either_yes :- lung_yes, tub_no.
18 either_no :- lung_no, tub_no.
19 // CPT for dysp
20 0.9::dysp_yes; 0.1::dysp_no :- bronch_yes, either_yes.
21 0.7::dysp_yes; 0.3::dysp_no :- bronch_no, either_yes.
22 0.8::dysp_yes; 0.2::dysp_no :- bronch_yes, either_no.
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23 0.1::dysp_yes; 0.9::dysp_no :- bronch_no, either_no.
24 // CPT for xray
25 0.98::xray_yes; 0.02::xray_no :- either_yes.
26 0.05::xray_yes; 0.95::xray_no :- either_no.
27 // Query
28 query(dysp_yes).

As for Bayesian networks, let us examine the graph used previously to
illustrate how reliability estimation problems can be described in ProbLog.
The ProbLog program for this network, assuming a query between the first
generator and the hospital, is below. Notice that the structure of this pro-
gram slightly differs from the one for Bayesian networks. The first part of
the program defines a set of probabilistic facts (lines 1-8), defining the bi-
nary distributions of the edges, followed by a (deterministic) logic program
encodings the reachability property (lines 9-10). Notice that, in this latter
part, X and Y are not atoms; they are variables that can be replaced by the
program’s atoms (e.g., gen1, a). Hence, this program states that there is
an path from a variable X to a variable Y if either: i) There is an edge from
X to Y or, ii) There is a edge from X to another variable Z and a path from
Z to Y.

1 0.2::edge(gen1,a).
2 0.4::edge(gen1,b).
3 0.8::edge(gen2, b).
4 0.6::edge(b,c).
5 0.1::edge(b,school).
6 0.35::edge(a,hosp).
7 0.05::edge(c,hosp).
8 0.5::edge(c,school).
9 path(X, Y) :- edge(X, Y).
10 path(X, Y) :- edge(X, Z), path(Z, Y).
11 query(path(gen1, hosp)).

Before formalising a ProbLog program and the distribution it defines, let
us explain its solving process. The goal of a ProbLog program is to compute
the probability of the query (e.g. query(path(gen1, hosp)).); hence, it must
find in which cases the query is respected (e.g., when is there a path from gen1

to hosp). To do so, it leverages the Prolog proof system, which tries to prove
the query by contradiction: it asserts that the query is falsified and tries to
find a contradiction (i.e., ⊤ =⇒ ⊥).

The base of Prolog proof system is the resolution rule, an inference rule
for propositional logic. Let 𝐶1 = ¬𝐴1 ∨ ¬𝐴2 ∨ 𝐷 and 𝐶2 = 𝐵 ∨ ¬𝐷 be two
clauses, then the resolution rule states that it is possible to infer a new clause
𝐶 = ¬𝐴1 ∨ ¬𝐴2 ∨ 𝐵. Another way of understanding resolution is to rewrite
the clauses as an implication: 𝐶1 = (𝐴1 ∧ 𝐴2) ⇒ 𝐷 and 𝐶2 = 𝐷 =⇒ 𝐵. The
first clause states that if 𝐴1 and 𝐴2 are true, then 𝐷 must be true. Similarly,
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the second clause states that if 𝐷 is true, 𝐵 must be true. Hence, if both 𝐴1
and 𝐴2 are true, 𝐵 must be true, as stated by the resolution rule.

This latter interpretation of the resolution rules makes it easier to under-
stand Prolog’s proof system. Each rule in a Prolog program is an implication,
and the goal is to find a chain of implication, starting from the negated query,
such that ⊤ ⇒ ⊥ is found. If ⊤ ⇒ ⊥ is found, the query is said to be proven.

Example: Prolog Proof System
Let us consider, as an example, our small reliability estimation program and
show how Prolog proves it. For now, let us assume that it is a deterministic
program (i.e., the probabilities are not taken into account)

1 0.2::edge(gen1,a).
2 0.4::edge(gen1,b).
3 0.8::edge(gen2, b).
4 0.6::edge(b,c).
5 0.1::edge(b,school).
6 0.35::edge(a,hosp).
7 0.05::edge(c,hosp).
8 0.5::edge(c,school).
9 path(X, Y) :- edge(X, Y).
10 path(X, Y) :- edge(X, Z), path(Z, Y).
11 query(path(gen1, hosp)).

Prolog starts with a single rule whose left-hand side is empty (⊥ by con-
vention), and the right-hand side is the query, forcing it to be false. Then,
it uses resolution to update the implicant of the clause until the right-hand
side becomes empty (⊤ by convention), which is a contradiction. Hence,
in our example, the rules start as follows.

:- path(gen1, hosp).

Next, Prolog searches for a rule in the program that the resolution in-
ference can use. It can be seen that there are no rules implying path(gen1,
hosp) in the program; resolution can not be applied directly. However, two
rules (lines 9, 10) have the path term on the left-hand side of the rule, but
with variables. Let us assume that ProbLog decides to apply the resolution
rule with line 9, which implies path(X, Y). To be valid, the mappings X =

gen1 and Y = hospmust be applied first; then, resolution can be used. This
process of renaming variables is called unification. Hence, after unification
and resolution, the rule becomes

:- edge(gen1, hosp).

Then, no rule can be used by resolution (with or without unification);
hence, Prolog can not prove a contradiction. Intuitively, it means there is
no way of having edge(gen1, hosp) set to true. Hence, it must be false,
leading to ⊥ ⇒ ⊥.
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However, there are still possibilities of finding a contradiction: previ-
ously, we decided to use resolution on our initial rule with the rule at line 9,
but the rule at line 10 could also be used. Hence, in such a case, Prolog back-
tracks to such a decision point and explores other possibilities to prove the
query. For example, a possible way of finding a contradiction is as follows
(the rules on the left of the arrows are the ones used for the resolution):

:- path(gen1, hosp).

:-edge(gen1,Z),path(Z,hosp).

:-path(a,hosp).

:-edge(a,hosp).

:- .

path(gen1,hosp):-edge(gen1,Z),path(Z,hosp).

edge(gen1,a).

path(a,hosp):-edge(a,hosp).

edge(a,hosp).

The proof can be understood as follows. There is a path from gen1 to
hops if there is an edge from gen1 to another node from which a path to
hosp can be found (first resolution). It is known (from the facts) that there
is an edge from gen1 to a; hence, Prolog proves that there is a path from a

to hosp (second resolution). If there is an edge from a to hosp, then there
is a path between these nodes (third resolution). The facts of the program
state that there is such an edge (last resolution); hence there is a path from
gen1 to hosp (the last rule is empty), which is a contradiction since Prolog
assumed that no such path exists.

In practice, Prolog’s resolution procedure can be seen as a tree of proof;
it explores the possible proofs until a contradiction is found. If no such proof
can be found, then the query cannot be proven from the program. Let 𝑄 be
a query, and L be a Prolog program; we denote L |= 𝑄 the fact that Prolog’s
resolution procedure finds a proof for 𝑄 given L.

Let us now formally define a ProbLog program, the probability distribu-
tion it defines, and the inference task it supports. Let A be a set of atoms, R
rules (including facts) over A, and 𝑄 ∈ A a query. The rules are partitioned
into probabilistic rules R𝑃 and a set of deterministic rules R𝐷 . We denote
𝑃 (𝑅) the probability of a probabilistic rule 𝑅 ∈ R𝑃 . Moreover, the set of prob-
abilistic rules is further partitioned into 𝑛 distributions (i.e., the rules defined
by the annotated disjunctions)R𝑃

1 , . . . ,R
𝑃
𝑛 .

Such a program defines a distribution over (deterministic) logic programs
(i.e., Prolog programs) as follows. A logic program is formed by taking a
subset X ⊆ R𝑃 of the probabilistic rules. The probability of such a subset is
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defined as follows.

𝑃 (X) =
{∏

𝑅∈X 𝑃 (𝑅) if |X ∩R𝑃
𝑖 | = 1 ∀1 ≤ 𝑖 ≤ 𝑛

0 otherwise

A logic program in the distribution defined by a ProbLog program is valid
if it selects exactly one probabilistic rule per annotated disjunction. Given
these definitions, we can now define ProbLog’s inference task.

Inference Task 3. LetR𝑃 ∪R𝐷
be a ProbLog program and𝑄 a query on this

program. The inference task of ProbLog is to compute the probability that the

query succeeds, which is calculated as follows.

𝑃 (𝑄 | R) =
∑︁

X⊆R𝑃 |X∪R𝐷 |=𝑄
𝑃 (X)

In other words, the probability of a query is the weighted sum of all Prolog
programs in which a proof for the query can be found.

2.2.5 Reducing ProbLog Inference to Weighted Model Counting

Recent implementations of ProbLog solve Inference task 3 by first transform-
ing the ProbLog program into a weighted boolean formula and then com-
puting its unprojected weighted model count [Fie+15; Vla+16]. This section
provides a brief overview of the key aspects of such a reduction.

ProbLog relies on the Prolog proving system, which can be seen as a tree
exploration of the possible proofs for the query. Moreover, all proofs must
be considered to compute the query’s probability of being respected. Hence,
ProbLog’s first step is to apply a modified version of Prolog’s resolution algo-
rithm to find all proofs for the query. During this first step, several grounded
terms (i.e., terms without variables) are generated by the unification process;
all such terms are used to create a grounded program.

This grounding procedure is necessary to eliminate the variables; creating
a boolean formula with such variables would result in a formula in first-order
logic. A grounded program, however, is similar to a propositional formula:
each fact is either true or false. Moreover, the grounded program only con-
tains terms necessary for the query computation. For example, the grounded
program for a Bayesian network only contains terms related to the ancestors
of the node queried.

Then, the grounded program can be transformed into a boolean formula.
For a program without positive cycles (i.e., a set of rules depending positively
on each other), this can be done using Clark’s completion algorithm [Llo12;
Jan04]. However, this algorithm does not work with positive cycles. Tech-
niques to remove such loops are outside the scope of this work, but removing
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such loops can produce CNF formulas exponentially larger than the initial
ProbLog program [Vla+16]. In particular, it is known that reliability estima-
tion problems possess such positive loops if the graph is cyclic. Hence, en-
coding such problems in ProbLog results in boolean formulas that might be
exponentially larger than the initial graph, contrary to encodings based on
projected weighted model counting. Finally, once the positive loops are bro-
ken, the weighted model count of the formula can be computed using state-
of-the-art weighted model counters.



Schlandals Modelling
Language 3
This chapter introduces Schlandals, a new modelling language based on CNF
formulas designed explicitly for probabilistic inference problems. First, we
motivate the development of a new modelling language for probabilistic in-
ference tasks. Then, we formally define Schlandals and prove that the tasks
described in Chapter 2 can be encoded in that language.

This chapter is based on the first part of the following article:

■ A. Dubray, P. Schaus, and S. Nijssen. “Probabilistic Inference by Pro-
jected Weighted Model Counting on Horn Clauses”. In: LIPIcs, Volume

280, CP 2023 280 (2023). Ed. by R. H. C. Yap. issn: 1868-8969. doi:
10.4230/LIPICS.CP.2023.15. (Visited on 03/07/2025)

In addition to the content from the original paper, the proofs that our new
language can be used to model ProbLog programs and Bayesian networks are
given.

3.1 Motivations for a New Modelling Language

One of the goals of this thesis is to explore how model counters can be spe-
cialised for probabilistic inference. While modern model counters are effi-
cient, they are not designed with the assumption that the CNF formulas they
count encode a probabilistic inference problem. For example, distributions
are transformed into variables linked by clauses (i.e., at least one and at most

one constraints). Model counters reason over the problem’s structure (e.g., for
the branching heuristic) based on the variables, but not how they are linked.
Hence, one of Schlandals’ goals is to have distributions as first-class citizens.
We show in Chapter 5 that such design choice allows us to compute an upper
bound on the weighted model count during the search.

We also observe that all the encodings presented in Chapter 2 share a sim-
ilarity: all clauses except those encoding the distributions are Horn clauses
(i.e., implications). A particularity of Horn formulas is checking their sat-
isfiability, which can be done during Boolean Unit Propagation [DG84], a
significant simplification. Hence, imposing such a structure in a boolean for-
mula simplifies the solving process. Moreover, we show in Chapter 4 how
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the structure of Horn formulas can be used to allow for further simplification
during propagations.

Another key observation is that encoding a probabilistic model into a
CNF formula requires adding variables unrelated to the model’s parameters.
Such variables must have a weight when solving a weighted model count-
ing problem and are assigned a weight of 1 so as not to impact the weighted
model count. Moreover, reducing some inference tasks to unweighted model
counting problem results in boolean formulas that are exponentially larger
than the initial probabilistic model (e.g., reliability estimation problems in
ProbLog [Vla+16]). To simplify the encoding and ensure polynomial-size
boolean formulas, we propose solving all the abovementioned problems us-
ing projected weighted model counting. Although it is already the state-of-
the-art encoding for reliability problems, it is new for Bayesian networks and
ProbLog.

All these specificities of the Schlandals language do not require develop-
ing a new solver; they could be integrated into modern model counters. How-
ever, another goal of this work is to explore how to design an efficient, simple
model counter. Modern model counters incorporate years of improvements,
often extending previous counters (e.g., both Ganak and sharpSAT-TD ex-
tends sharpSAT). Extending such solvers with new ideas can be challenging
at times. For example, working on distributions rather than boolean variables
requires rethinking the branching heuristics and solver data structures. For
this reason, we decided to start from scratch, implementing the most basic
functionalities required for search-based model counters.

3.2 A Modelling Language Designed for Probabilistic
Inference

Schlandals is a language based on propositional logic and relies on solving
a projected weighted model counting problem. Let us remember that 𝐹 is a
boolean formula over variablesB partitioned between projected variables P
and non-projected variablesX . Since this work focuses on probabilistic prob-
lems, the weights on the projected variables are used to model probabilities.
Hence, we also refer to those as probabilistic variableswhile the non-projected
variables are called deterministic variables. Two novelties are introduced in
Schlandals compared to classical propositional logic. First, a constraint on
the clauses in 𝐹 is imposed: only Horn clauses are allowed.

Definition 5 (Horn clause). A Horn clause 𝐶 is a formula of the form

𝐵1 ∧ · · · ∧ 𝐵𝑛 ⇒ 𝐵𝑡

where I = 𝐵1 ∧ · · · ∧ 𝐵𝑛 is called the implicant of the clause and 𝐻 = 𝐵𝑡 is the
head of the clause. Here 𝐵𝑖 ∈ B is a boolean variable, and 𝐵𝑡 is either a boolean
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variable in B or ⊥. If 𝑛 = 0 (the implicant is empty), then the left-hand side

reduces to ⊤.

It can be observed that when a Horn clause is written as an implication,
as above, all the literals in the implication have the same (positive) polarity.
Hence, we only discuss variables, not literals, to simplify our discussion and
notation. A Horn clause 𝐶𝑖 can be identified uniquely by its implicant I𝑖 and
head𝐻𝑖 . Hence, when clear of the context, we use the notation𝐶𝑖 and (I𝑖 , 𝐻𝑖)
interchangeably. For simplicity of notation, we also denote by 𝐵 ∈ I𝑖 that
𝐵 ∈ B is a variable of the implicant of𝐶𝑖 . Horn clauses have beenwell-studied
in the literature. A significant result is that the SAT problem over a CNF
formula of Horn clauses can be solved in linear time [DG84]; given that the
SAT problem in its general form is NP-hard, this is a significant simplification.

Secondly, we add the notion of distributions over the probabilistic variables.
We assume that each probabilistic variable 𝑃 ∈ P belongs to exactly one part
of a partition Pi ⊆ P of the probabilistic variables. We define a distribution
over each such a part in the following simple manner: we require that one
weight 𝜔 (𝑃) > 0 is specified for each probabilistic variable 𝑃 ∈ P𝑖 and that∑

𝑃∈P𝑖
𝜔 (𝑃) = 1. Hence, a Schlandals formula can be defined as follows.

Definition 6 (Schlandals formula). Let B = P ∪X be a set of boolean vari-

ables. Let P be partitioned into 𝑛 subsets P1, . . . ,P𝑛 and 𝜔 : P ↦→ [0, 1] be a
weight function such that

∑
𝑃∈P𝑖

𝜔 (𝑃) = 1 for all P𝑖 . A Schlandals formula is

a literal-weighted boolean formula 𝐹 over the variablesB with weight function

𝜔 such that 𝐹 has the following form.

𝐹 = (I1 ⇒ 𝐻1) ∧ . . . ∧ (I𝑘 ⇒ 𝐻𝑘 )

Let 𝐼 : P ↦→ {⊤,⊥} be an interpretation on a Schlandals formula 𝐹 . The
weight of that interpretation is based on the weight of each part P𝑖 defined
as follows.

𝜔𝐼 (P𝑖) =
{
𝜔 (𝑃) if there is exactly one 𝑃 ∈ P𝑖 for which 𝐼 (𝑃) = ⊤
0 otherwise, (3.1)

In other words, if precisely one variable in the partition is set to⊤, the weight
of that variable is given to that partition; otherwise, the assignment has a zero
weight. Since interpretations with a weight of 0 do not affect the count of
a formula, we only consider interpretation respecting the first condition of
Equation (3.1). Hence, an interpretation in Schlandals can be seen as assign-
ing a value to each distribution. We can now define the problem of model
counting for a Schlandals formula 𝐹 .
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Problem 5 (weighted #∃SSAT). Let 𝐹 be a Schlandals formula, in CNF, over

variables B = P ∪X and 𝜔 : P ↦→ [0, 1] a weight function. The weighted

#∃SSAT problem is to compute the weighted sums of the projected models of 𝐹

as follows. ∑︁
𝐼 ∈SP (𝐹 )

𝑛∏
𝑖=1

𝜔𝐼 (P𝑖)

Problem 5 and Problem 4 are, in essence, very similar. The only differ-
ences in the problem formulation are that, in Problem 5, 𝐹 is a Horn formula

and the weight function is applied on the partitions P𝑖 , the distributions, and
not the literals. When clear from the context, we denote the problem of count-
ing the assignments of Schlandals formula the same way as classical boolean
formulas, as pwmc(𝐹, P).

3.3 Encoding Probabilistic Inference Problems in Schlandals

This section shows how the inference problems defined in Chapter 2 can
be modelled in Schlandals. We omit the problem of reliability estimation in
probabilistic graphs, as the encoding in Schlandals follows the one presented
above, with the only difference being that each edge is encoded using a dis-
tribution instead of a single boolean variable.

3.3.1 Bayesian Networks

Let (V ,𝚽) be a Bayesian networks as defined in Chapter 2. The variables used
for encoding the network are the same as for ENC1, defined as follows.

𝜆𝑣 ∈ {⊤,⊥} ∀𝑣 ∈ dom(𝑉 ), ∀𝑉 ∈ V (3.2)
𝜃z ∈ {⊤,⊥} ∀z ∈ ×𝑍 ∈scope(Φ𝑉 ) dom(𝑍 ), ∀𝑉 ∈ V (3.3)

We define P as the probabilistic variables determined by Equation (3.3)
and partition them the following way. Intuitively, a distribution must be de-
fined for each row of a node’s CPT. A distribution is defined over its domain
for each possible assignment to its parents. The following equation defines
the partitions in this manner.

P y
𝑉

=
⋃

𝑣∈dom(𝑉 )
{𝜃𝑣y} ∀y ∈

?
𝑌 ∈scope(Φ𝑉 )

𝑌≠𝑉

dom(𝑌 ),∀𝑉 ∈ V (3.4)

Equation (3.4) effectively defines distributions according to the rows of the
CPTs. For each node 𝑉 ∈ V , it considers every assignment on the variables
in scope(𝑉 )\𝑉 - the parents of𝑉 - and creates a distribution of size | dom(𝑉 ) |.
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Finally, the clauses encoding the network’s structure and the evidence
must be defined. The clauses for the structure are very similar to those in
ENC1 and are presented next.(

∧𝑦∈y𝜆𝑦
)
∧ 𝜃𝑣y ⇒ 𝜆𝑣 ∀𝑣 ∈ dom(𝑉 ), ∀y ∈

?
𝑌 ∈scope(Φ𝑉 )

𝑌≠𝑉

dom(𝑌 )

∀𝑉 ∈ V (3.5)

The evidence is encoded using the following clauses.

¬𝜆𝑦 ∀𝑦 ∈ dom(𝑋 ) such that 𝑦 ≠ 𝑥 ,∀𝑋 ∈ E with value 𝑥 (3.6)

Example: Bayesian Network in Schlandals
For example, let us illustrate how to encode our small Bayesian network ex-
ample in Schlandals. For conciseness, let us encode only the two following
CPTs.

asia
⊤ ⊥

𝚯1 0.1 0.99

bronc
smoke ⊤ ⊥

𝚯2 ⊤ 0.6 0.4
𝚯3 ⊥ 0.3 0.7

As inENC1, the following indicator and parameter variables are needed.

𝚲 = 𝜆𝐴⊤, 𝜆𝐴⊥, 𝜆𝐵⊤, 𝜆𝐵⊥, 𝜆𝑆⊤, 𝜆𝑆⊥

𝚯 = 𝜃𝐴⊤, 𝜃𝐴⊥, 𝜃𝐵⊤𝑆⊤, 𝜃𝐵⊥𝑆⊤, 𝜃𝐵⊤𝑆⊥, 𝜃𝐵⊥𝑆⊥

However, unlike ENC1, the 𝚯 variables must be partitioned into distri-
butions. The following distributions are created and shown in the corre-
sponding rows of the CPTs.

𝚯1 = {𝜃𝐴⊤, 𝜃𝐴⊥}, 𝚯2 = {𝜃𝐵⊤𝑆⊤, 𝜃𝐵⊥𝑆⊤}, 𝚯3 = {𝜃𝐵⊤𝑆⊥, 𝜃𝐵⊥𝑆⊥}

The following clauses are used to encode the structure of the Bayesian net-
work.

𝜃𝐴⊤ ⇒ 𝜆𝐴⊤ 𝜆𝐵⊤ ∧ 𝜃𝐵⊤𝑆⊤ ⇒ 𝜆𝑆⊤ 𝜆𝐵⊥ ∧ 𝜃𝐵⊥𝑆⊤ ⇒ 𝜆𝑆⊤

𝜃𝐴⊥ ⇒ 𝜆𝐴⊥ 𝜆𝐵⊤ ∧ 𝜃𝐵⊤𝑆⊥ ⇒ 𝜆𝑆⊥ 𝜆𝐵⊥ ∧ 𝜃𝐵⊥𝑆⊥ ⇒ 𝜆𝑆⊥

Finally, a query such as 𝑃 (asia = ⊤) can be encoded using the following
unit clause.

¬𝜆𝐴⊥
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There is a significant difference between the encoding presented above
and the ones described in Chapter 2: the parameter variables are in the im-

plicant of the clauses. Without delving into the technical details developed in
Chapter 4, this allows for removing clauses and variables from the encoding
during pre-processing, thanks to the non-projected variables. However, this
choice implies that the evidence must be encoded differently. Similarly to re-
liability estimation problems, encoding the query using positive literals (i.e.,
𝜆𝑦) does not constrain the problem. Hence, every interpretation is a model of
the formula, and its weighted model count is always 1.

Another key difference is that the distributions are defined over the pa-
rameter variables. In ENC1, the at most one and at least one constraints are
defined over the indicator variables. At first glance, this seems unintuitive: a
valid assignment in Schlandals requires that each distribution has exactly one
variable set to ⊤. Hence, in such an interpretation, multiple variables linked
to the same CPT are set to ⊤. While this seems problematic, we demonstrate
next that, in practice, only one parameter variable per CPT is constrained.

Example: Bayesian Network Interpretations
Let us assume a small Bayesian network with two binary nodes, 𝐴 and 𝐵,
such that𝐴 is the parent of 𝐵. The two following clauses encoded𝐴’s CPT:

𝐶1 = 𝜃𝐴⊤ ⇒ 𝜆𝐴⊤ 𝐶2 = 𝜃𝐴⊥ ⇒ 𝜆𝐴⊥ .

The four following clauses are needed for 𝐵’ CPT:

𝐶3 = 𝜆𝐴⊤ ∧ 𝜃𝐵⊤𝐴⊤ ⇒ 𝜆𝐵⊤ 𝐶4 = 𝜆𝐴⊤ ∧ 𝜃𝐵⊥𝐴⊤ ⇒ 𝜆𝐵⊥

𝐶5 = 𝜆𝐴⊥ ∧ 𝜃𝐵⊤𝐴⊥ ⇒ 𝜆𝐵⊤ 𝐶6 = 𝜆𝐴⊥ ∧ 𝜃𝐵⊥𝐴⊥ ⇒ 𝜆𝐵⊥

Let 𝐹 be the boolean formula obtained by using these clauses; mod-
els of 𝐹 must have one variable from {𝜃𝐵⊤𝐴⊤, 𝜃𝐵⊥𝐴⊤} and one variable from
{𝜃𝐵⊤𝐴⊥, 𝜃𝐵⊥𝐴⊥} set to⊤. Intuitively, it means that two entries in 𝐵’s CPT are
activated, which is not possible for Bayesian networks. However, depend-
ing on the choice for the distribution {Θ𝐴⊤,Θ𝐴⊥}, one of the two remaining
distributions does not constrain the formula anymore.

Let us assume 𝜃𝐴⊤ = ⊤, then, 𝐶1 forces 𝜆𝐴⊤ = ⊤ and 𝐶2 is always
respected, since 𝜃𝐴⊥ = ⊥. Hence, 𝐶3 and 𝐶4 are reduced, respectively, to
𝜃𝐵⊤𝐴⊤ ⇒ 𝜆𝐵⊤ and 𝜃𝐵⊥𝐴⊤ ⇒ 𝜆𝐵⊥ . On the other hand, 𝐶5 and 𝐶6 are un-
changed.

The crucial observation is that 𝜆𝐴⊥ is a non-projected variable. Hence,
for any assignment to the distributions, it is sufficient to find an assign-
ment on 𝜆𝐴⊥ that is part of a model of 𝐹 . In particular, setting 𝜆𝐴⊥ = ⊥
is valid for any assignments of the remaining probabilistic variables (i.e.,



3.3. Encoding Probabilistic Inference Problems in Schlandals 49

it does not remove interpretations on them). After such assignments, it
can be seen that 𝐶5 and 𝐶6 are always respected; hence, the distribution
{𝜃𝐵⊤𝐴⊥, 𝜃𝐵⊥𝐴⊥} does not constrain the problem anymore. It follows that
any valid interpretation 𝐼 : P ↦→ {⊤,⊥} can be mapped to a single assign-
ment of the initial Bayesian network’s nodes. Moreover, the weighted sum
of each valid interpretation corresponding to the same assignment of the
BN nodes corresponds to the assignment probability.

Theorem 3. Let (V ,𝚽) be a Bayesian network and E ⊆ V a set of variables

whose observed values are e. LetX andP be the set of boolean variables respec-

tively defined by Equation (3.2) and Equation (3.3). Moreover, let P1, . . . ,P𝑛 be

a partitioning of P as defined by Equation (3.4). If 𝐹 is a Schlandals formula

over variables B = P ∪X , with projected variables P , and clauses as defined

by Equation (3.5), then the following equality holds.

𝑃 (E = e) = pwmc(𝐹,P )

Proof. We prove this theorem by first proving that any assignment v to the
BN’s variable correspond to a subset Iv of the interpretations of 𝐹 such that

𝑃 (V = v) =
∑︁
𝐼 ∈Iv

𝜔 (𝐼 ) .

Let 𝜋𝑉 :
>

𝑌 ∈V dom(𝑌 ) ↦→ >
𝑍 ∈scope(Φ𝑉 ) dom(𝑍 ) be a projection oper-

ator from the whole set of variables to the subset of variables in scope(Φ𝑉 ).
A complete assignment v imposes that some parameter variables must be set
to ⊤: for each CPT Φ𝑉 ∈ 𝚽, the variable 𝜃z with z ∈ >

𝑍 ∈scope(Φ𝑉 ) dom(𝑍 )
such that 𝜋𝑉 (v) = z must be true. Let 𝚯v be the set of parameter variables
that must be true given the complete assignment v. We say that an interpre-
tation 𝐼 is consistent with v if and only if 𝐼 (𝜃 ) = ⊤ ∀𝜃 ∈ 𝚯v . Note that other
variables in P might be set to ⊤ by 𝐼 (i.e., probabilistic variables appearing in
other rows of the CPTs). We define Iv as the set of interpretations of 𝐹 that
are consistent with v.

Let us now compute
∑

𝐼 ∈Iv 𝜔 (𝐼 ). By definition,𝜔 (𝐼 ) =
∏

𝑃∈P |𝐼 (𝑃 )=⊤𝜔 (𝑃).
Moreover, by assumptions each interpretation 𝐼 ∈ Iv sets the variables in 𝚯v

to ⊤; hence, we have

𝜔 (𝐼 ) =
( ∏
𝜃 ∈𝚯v

𝑃 (𝜃 )
) ©«

∏
𝑃∈P |𝑃∉𝚯v∧𝐼 (𝑃 )=⊤

𝜔 (𝑃)ª®¬ .
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It follows that:

∑︁
𝐼 ∈Iv

𝜔 (𝐼 ) =
∑︁
𝐼 ∈Iv

( ∏
𝜃 ∈𝚯v

𝑃 (𝜃 )
) ©«

∏
𝑃∈P |𝑃∉𝚯v∧𝐼 (𝑃 )=⊤

𝜔 (𝑃)ª®¬
=

( ∏
𝜃 ∈𝚯v

𝑃 (𝜃 )
) ∑︁
𝐼 ∈Iv

∏
𝑃∈P |𝑃∉𝚯v∧𝐼 (𝑃 )=⊤

𝜔 (𝑃)

By construction of 𝐹 , we have that each 𝜃 ∈ 𝚯v has its weight derived
from the CPT; hence, 𝑃 (V = v) = ∏

𝜃 ∈𝚯v
𝑃 (𝜃 ). We now prove that∑︁

𝐼 ∈Iv

∏
𝑃∈P |𝑃∉𝚯v∧𝐼 (𝑃 )=⊤

𝜔 (𝑃) = 1.

The reasoning is the following: the term on the left-hand side of the equa-
tion can be seen as computing the weighted sum of interpretations on all
distributions except the ones in 𝚯v . Since there are no constraints on these
distributions (i.e., no specific variables in them must be true), then it is the
weighted sum of all possible interpretations on the distributions in P \ 𝚯v

which, by definition, is 1.
We proved that every assignment v to the BN’s nodes corresponds to a

specific subset of the interpretations whose weighted sum corresponds to the
assignment’s probability. Moreover, for two different assignments v1 and v2,
the sets Iv1 and Iv2 are disjoint and the union of all possible sets Iv forms the
set of all interpretations of 𝐹 . Finally, by selecting all assignments v respect-
ing 𝐹 constraints on the evidence (i.e., each node 𝐸 ∈ E is forbidden to take
any other value than 𝑒 ∈ e), we have the result that 𝑃 (E = e) = pwmc(𝐹,P ).

□

3.3.2 ProbLog

Let R be a grounded ProbLog program over atoms A, R𝑃 = ∪𝑛𝑖=1R𝑃
𝑖 be the

n-partitioned set of probabilistic rules of R, and 𝑄 a query on R. Such a
program already follows the structure of a Schlandals formula: it contains 𝑛
distributions, and the set R defines a Horn formula. A Schlandals formula
is constructed from R as follows. One boolean variable is created per atom,
and one boolean variable is created per value on the left-hand side of the
annotated disjunctions.

𝐵𝐴 ∈ {⊤,⊥} ∀𝐴 ∈ A (3.7)

𝜃
𝑗

𝑖
∈ {⊤,⊥} ∀𝑅 𝑗

𝑖
∈ R𝑃

𝑖 , ∀R𝑃
𝑖 ∈ R𝑃 (3.8)
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Then, each rule 𝑅 ∈ R is translated as a Horn clause and the query𝑄 ∈ A
is negated.

𝐵𝐴1 ∧ . . . ∧ 𝐵𝐴𝑘
=⇒ 𝐵𝐴ℎ

∀𝐴ℎ :- 𝐴1, . . . , 𝐴𝑘 ∈ R \R𝑃 (3.9)

𝐵𝐴1 ∧ . . . ∧ 𝐵𝐴𝑘
∧ 𝜃 𝑗

𝑖
=⇒ 𝐵𝐴ℎ

∀ 𝑅 𝑗

𝑖
= 𝐴ℎ :- 𝐴1, . . . , 𝐴𝑘 ∈ R𝑃

𝑖

∀R𝑃
𝑖 ∈ R𝑃 (3.10)

¬𝐵𝑄 (3.11)

We define the projected variablesP as the variables defined by Equation (3.8),
and their weight is given by the initial ProbLog program.

𝜔 (𝜃 𝑗

𝑖
) = 𝑃 (𝑅 𝑗

𝑖
) ∀𝑅 𝑗

𝑖
∈ R𝑃

𝑖 , ∀R𝑃
𝑖 ∈ R𝑃 (3.12)

Theorem 4. Let R be a grounded ProbLog program over the atoms A, R𝑃 =

∪𝑛𝑖=1R𝑃
𝑖 the set of probabilistic rules, and 𝑄 ∈ A a query. Let 𝐹 be a Schlandals

formula over variables B defined by Equations (3.7)-(3.8), projected variables

P ⊆ B defined by Equation (3.8), and clauses defined by Equations (3.9)-(3.11).
Let the projected variables be weighted following Equation (3.12). Then, the

following equality holds.

𝑃 (𝑄 | R) = 1 − pwmc(𝐹,P )

Proof. First, let’s examine the formula encoded in the grounded program. As
explained in Chapter 2, it is obtained using Prolog’s proof system, which finds
all proofs in which 𝑄 ⇒ ⊥ creates a contradiction; hence, 𝑄 is ⊤. Let R𝐷 =

R \R𝑃 , the probability of the query 𝑄 is defined, for ProbLog, as follows:∑︁
X⊆R𝑃 |X∪R𝐷 |=𝑄

𝑃 (X) .

In other words, it is the weighted sum of each logic program induced by the
ProbLog program distribution such that they are satisfied given the query 𝑄 .
Let us now link the ProbLog program distribution and the Schlandals formula
𝐹 .

By construction, the clauses in 𝐹 are in one-to-one correspondence with
the grounded rules R, and a distribution is created for each annotated dis-
junction. A non-zero weighted interpretation of 𝐹 correspond to a choice for
the distributions and, hence, a logic program in the ProbLog program dis-
tribution. The weights of the boolean variables are such that the following
equality holds for an interpretation 𝐼 and the corresponding logic program
IR.

𝑛∏
𝑖=1

𝜔P𝑖
(𝐼 𝐹 ) =

∏
𝑅∈IR

𝑃 (𝑅)
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We now show that the weighted model count of 𝐹 corresponds exactly
to counting the interpretations corresponding to inconsistent logic programs
(i.e., programs in which 𝑄 = ⊥). The model count of 𝐹 is computed as
pwmc(𝐹,P ) = ∑

𝐼 ∈SP (𝐹 ) 𝜔 (𝐼 ), with SP (𝐹 ) defined as follows:

SP (𝐹 ) = {𝐼 : P ↦→ {⊤,⊥} | ∃ 𝐼 ′ : B \P ↦→ {⊤,⊥} such that 𝐹 [𝐼 ∪ 𝐼 ′] = ⊤}.

In other words, the interpretations considered in the weighted sums are
the ones in which the choice for the distributions results in a satisfiable resid-
ual formula. Given the link between the interpretations and the logic pro-
grams, it means that the weighted sums are over logic programs consistent
with the formula 𝐹 . In our encoding, contrary to the initial logic programs,
the query is negated. It follows that pwmc(𝐹,P ) is a weighted sum over in-
terpretations corresponding to logic programs in which 𝑄 = ⊥. Hence, we
have that 𝑃 (𝑄 | R) = 1 − pwmc(𝐹,P ). □

One crucial observation is that encoding a ProbLog program into Schlandals
only requires a grounded program. That is, there is no need to apply Clark’s
completion algorithm and, hence, no need for cycle breaking. This is a signif-
icant improvement, as reliability problems can now be solved using formulas
that are not exponentially larger than the initial ProbLog program.

3.4 Conclusion

This chapter introduced Schlandals, a modelling language for probabilistic
inference problems based on propositional formulas. Contrary to proposi-
tional formulas, the distributions in Schlandals are first-class citizens; they
do not need to be encoded into clauses. Moreover, each Schlandals formula is
a Horn formula, as the clauses necessary to encode the considered probabilis-
tic inference problems are Horn. Finally, this language is designed so that its
weighted model count is computed using projected weighted model counters;
hence, only the boolean variables in the distributions are weighted.

Although state-of-the-art reliability estimation encoding already follows
the same structure as a Schlandals formula, we showed how to encode Bayesian
networks and ProbLog programs into Schlandals. We provide proof that our
encodings are correct for these two inference tasks. In particular, our proof
for ProbLog programs only required a grounded program, removing the need
to apply cycle breaking and ensuring polynomial-size encoding for reliability
estimation problems.



Exact Inference in
Schlandals 4
This chapter details the internal mechanics of the Schlandals solver, a model
counter specialised for calculating the weighted model count of a Schlandals
formula. More precisely, we show how to develop DPLL-based projected
weightedmodel counters to account for distributions andHorn clauses. Then,
we introduce a new propagation algorithm that uses the non-projected vari-
ables and Horn structure. Finally, we briefly demonstrate how Schlandals
can be adapted for Knowledge Compilation before concluding with an exper-
imental evaluation of the solver.

This chapter is based on the following article:

■ A. Dubray, P. Schaus, and S. Nijssen. “Probabilistic Inference by Pro-
jected Weighted Model Counting on Horn Clauses”. In: LIPIcs, Volume

280, CP 2023 280 (2023). Ed. by R. H. C. Yap. issn: 1868-8969. doi:
10.4230/LIPICS.CP.2023.15. (Visited on 03/07/2025)

The exploration of knowledge compilation in Schlandals was not present
in the original paper and is an addition to this manuscript. Additional exper-
iments have also been conducted.

4.1 Exhaustive DPLL-style Search

Themain conceptual difference between classicalmodel counting and Schlandals
is the computation of an interpretation’s weight. In the former, an interpre-
tation’s weight consists of the products of its literals; in the latter, it relies on
the partition of the projected variables. Moreover, using Horn-formulas sim-
plifies the calculation when all projected variables have been assigned. Al-
gorithm 3 gives an overview of the main procedure of Schlandals and high-
lights these differences. It follows the same structure as a classical DPLL-
based model counter: a cache is used to store intermediate results (line 19)
and reuse them (line 2), it branches on some variables (lines 4-5), applies a
propagation algorithm (line 6), and explore the independent components of
the residual formula (line 15).

The first main difference concerns the branching; Algorithm 3 branches
on distributions and not variables. Since an interpretation that does not set
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Algorithm 3: DPLL-based algorithm for solving Problem 5
1 Function Schlandals-PWMC(𝐹, P, 𝜔,𝐶)

input : 𝐹 a boolean Horn-formula, over variables B
input : P = ∪𝑛𝑖=1P𝑖 ⊆ B a set of projected variables, partitioned

into 𝑛 distributions
input : 𝜔 a literal-weight function
input : 𝐶 a cache of sub-results
output: weighted #∃SSAT (𝐹, P)

2 if 𝐹 ∈ 𝐶 then return 𝐶 [𝐹 ]
3 if P = ∅ then return 1
4 𝑖 ← a distribution index such that ∃𝑃 ∈ P𝑖 | 𝑃 is not fixed
5 foreach 𝑃 ∈ P𝑖 do
6 𝐹 ′ ← Propagate(𝐹, 𝑃,⊤)
7 if 𝐹 ′ = ⊥ then count𝑃 ← 0
8 else
9 𝐶𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡𝑠 ← all connected components of 𝐹 ′

10 fixed← {𝑃 ′ | 𝑃 ′ ∈ P ∧ 𝑃 ′ = ⊤}
11 count𝑃 ←

∏
𝑃 ′∈fixed𝜔 (𝑃 ′)

12 count𝑃 ← count𝐵 ×
∏

𝑗 |P𝑗 is unconstrained in 𝐹 ′
∑

𝑃 ′∈P𝑗
𝜔 (𝑃 ′)

13 foreach 𝐶𝑜𝑚𝑝 ∈ 𝐶𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡𝑠 do
14 P′ ← P reduced to the variables in 𝐶𝑜𝑚𝑝

15 count𝑃 ← count𝐵∗ DPLL-PWMC(𝐶𝑜𝑚𝑝, P′, 𝜔,𝐶)
16 end
17 end
18 end
19 𝐶 [𝐹 ] ← ∑

𝑃∈P𝑖 count𝑃
20 return 𝐶 [𝐹 ]

exactly one variable per partition P𝑖 to ⊤ weights 0, the solver ensures (dur-
ing the propagation) that each partition’s variables are mutually exclusive.
Hence, a partition P𝑖 can be seen as a variable whose domain consists of
boolean variables, and the solver heuristically selects a distribution to be
fixed.

This weighting scheme also impacts how a branch’s count is computed
(lines 10-12). It is composed of three elements: the weights of the probabilistic
variables set to ⊤ during the propagation (lines 10-11), the count of the in-
dependent components (line 15), and the count of unconstrained distributions
(line 12). This last element is not present for classical model counters; we will
detail its computation next.

Definition 7 (UnconstrainedDistribution). Let 𝐹 =𝐶1∧. . .∧𝐶𝑘 be a Schlandals
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formula over variables B with P = ∪𝑛𝑖=1P𝑖 probabilistic variables. When the

following conditions are met, a distribution P𝑖 is called unconstrained.

1. No clause contains a variable of P𝑖 : ∀1 ≤ 𝑗 ≤ 𝑘, 𝐶 𝑗 ∩ P𝑖 = ∅
2. No variable in P𝑖 is set to ⊤.

Detecting such distributions is crucial because branching on them would
not yield any propagation. In particular, any partial model on 𝐹 can be ex-
tended by any assignment on unconstrained distributions and be a model of
𝐹 . The following theorem demonstrates that the contribution of such distri-
butions to the weighted model count can be formulated in a closed form.

Theorem 5. Let 𝐹 be a Schlandals formula over distributions P = ∪𝑛𝑖=1P𝑖 and

weight function 𝜔 : P ↦→ [0, 1]. Without loss of generality, let us assume that

the𝑚 first distributions of 𝐹 are unconstrained, and let us denoteP ′ = ∪𝑛𝑖=𝑚+1P𝑖

the remaining distributions. Then, the following equality holds.

pwmc(𝐹,P ) =
(
𝑚∏
𝑖=1

∑︁
𝑉 ∈P𝑖

𝜔 (𝑉 )
)
× pwmc(𝐹,P ′)

Proof. By definition of the weighted model count, we have the following
equality:

pwmc(𝐹,P ) =
∑︁
𝑃∈P1

𝜔 (𝑃) × pwmc(𝐹 [𝑃 = ⊤],P \ P1) .

By assumption, P1 does not appear in 𝐹 ; hence, for each 𝑃 ∈ P1, we have
𝐹 [𝑃 = ⊤] = 𝐹 . It follows that:

pwmc(𝐹,P ) = pwmc(𝐹,P \ P1) ×
∑︁
𝑃∈P1

𝜔 (𝑃)

=

( ∑︁
𝑃∈P2

𝜔 (𝑃) × pwmc(𝐹,P \ P1 ∪ P2)
)
×

∑︁
𝑃∈P1

𝜔 (𝑃) .

We obtain the following result using the same reasoning as for the𝑚 uncon-
strained distribution.

pwmc(𝐹,P ) = pwmc(𝐹,P \ ∪𝑚𝑖=1P𝑖) ×
𝑚∏
𝑖=1

∑︁
𝑃∈P𝑖

𝜔 (𝑃)

□
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This result is used to compute the contribution of each unconstrained
distribution after propagation (line 12). This term is unnecessary when per-
forming classical weighted model counting, as we assume a setting in which
the sum of the weights of a variable’s literals is 1.

In addition to these differences, the case when P = ∅ (line 3) is simplified
in Schlandals: 𝐹 is a Horn formula, and it is known that if 𝐹 is unsatisfiable, it
is detected by BUP. Since Schlandals’ propagation algorithm performs BUP,
it is known that 𝐹 has a model and 1 is directly returned without calling an
SAT solver. Finally, the computation of independent components (line 9) has
also been modified to account for the distributions: two sub-formulas are
considered independent if they do not share any variables nor variables that
belong to the same distribution.

4.1.1 Propagation

In this section, we describe the propagation algorithm used by Schlandals
(line 6 in Algorithm 3). Briefly, it operates in two steps. First, boolean unit
propagation and the distribution constraints are applied. Then, an additional
propagation removes clauses that do not affect the count by leveraging the
non-projected variables.

Algorithm 4 shows how Schlandals performs Boolean Unit and Distribu-

tion Propagation (BUDP). This algorithm is similar to classical BUP and fol-
lows the same structure except for the distribution constraints (lines 18-24).
When a probabilistic variable is set to true, all variables in the same distribu-
tion must be false (lines 19-20). If it is set to false, and only one other variable
remains in the distribution, that variable must be true (lines 21-23).

Algorithm 4 is necessary as the distributions are not transformed into
clauses. However, this algorithm has the same propagation strength as clas-
sical BUP with distributions encoded directly in 𝐹 . On the other hand, the
additional propagation presented below is an addition to BUP and relies on
the projected variables. The intuition is that the deterministic variables can
be used to remove additional clauses from 𝐹 . Let us show how this can be
done using the following example.

Example: Removing Clauses with Non-projected Variables
Let us consider the graph for the electrical network of our small city, shown
below, and assume that the query is to compute the probability that the
second generator is connected to the school. To compute the probability of
this query, only the sub-graph containing all the paths between the source
and the target is necessary. Hence, the faded part of the graph could be re-
moved without impacting the solution. The goal of Schlandals’ additional
propagation is to remove unnecessary clauses.
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Algorithm 4: Boolean Unit and Distribution Propagation
1 Function BUDP(𝐹 , 𝐵, 𝑣)

input : 𝐹 a Schlandals formula over variables B and
distributions P

input : 𝐵 ∈ B a boolean variable to set to value 𝑏 ∈ {⊤,⊥}
output: 𝐹 ′ the residual formula

2 𝐹 ′ ← 𝐹

3 𝑄 ← Queue(); 𝑄 .push((𝐵,𝑏))
4 while |𝑄 | > 0 do
5 (𝑉 , 𝑣) ← Q.pop()
6 if 𝑉 has been previously assigned to 𝑣 then return ⊥
7 assign 𝑣 to 𝑉
8 if 𝑣 = ⊤ then 𝐹 ′ ← 𝐹 ′ \ {𝐶 | 𝐶 ∈ 𝐹 ′ ∧𝑉 ∈ 𝐶}
9 if 𝑣 = ⊥ then 𝐹 ′ ← 𝐹 ′ \ {𝐶 | 𝐶 ∈ 𝐹 ′ ∧ ¬𝑉 ∈ 𝐶}

10 foreach 𝐶 ∈ 𝐹 ′ do
11 if 𝑣 = ⊤ and ¬𝑉 ∈ 𝐶 then 𝐶 =𝐶 \ {¬𝑉 }
12 if 𝑣 = ⊥ and 𝑉 ∈ 𝐶 then 𝐶 =𝐶 \ {𝑉 }

/* 𝐶 is a clause with only one literal */
13 if |𝐶 | = 1 then
14 if 𝐶 =𝑉 ′ then 𝑄 .push((𝑉 ′,⊤))
15 if 𝐶 = ¬𝑉 ′ then 𝑄 .push((𝑉 ′,⊥))
16 end
17 end
18 if 𝑉 ∈ P𝑖 with P𝑖 ⊆ P then
19 if 𝑣 = ⊤ then
20 foreach 𝑉 ′ ∈ P𝑖 | 𝑉 ′ ≠ 𝑉 do 𝑄 .push((𝑉 ′,⊥))
21 else if P𝑖 = {𝑉 ,𝑉 ′} then
22 𝑄 .push((𝑉 ′, ⊤))
23 end
24 end
25 end
26 return 𝐹 ′
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To illustrate that propagation, let us show the clauses for the graph
above. The faded clauses correspond to the unnecessary sub-graph; hence,
these are the clauses that can be safely removed.

𝜆𝐺1 ∧ 𝜃𝐺1𝐴 ⇒ 𝜆𝐴 𝜆𝐵 ∧ 𝜃𝐵𝑆 ⇒ 𝜆𝑆 𝜆𝐶 ∧ 𝜃𝐶𝐻 ⇒ 𝜆𝐻

𝜆𝐺1 ∧ 𝜃𝐺1𝐵 ⇒ 𝜆𝐵 𝜆𝐵 ∧ 𝜃𝐵𝐶 ⇒ 𝜆𝐶 𝜆𝐶 ∧ 𝜃𝐶𝑆 ⇒ 𝜆𝑆

𝜆𝐺2 ∧ 𝜃𝐺2𝐵 ⇒ 𝜆𝐵 𝜆𝐴 ∧ 𝜃𝐴𝐻 ⇒ 𝜆𝐻

The two unit clauses needed to compute 𝑃 (path(𝐺2, 𝑆)) are 𝜆𝐺2 and
¬𝜆𝑆 . Applying the BUDP algorithm gives the following clauses.

𝜆𝐺1 ∧ 𝜃𝐺1𝐴 ⇒ 𝜆𝐴 𝜆𝐵 ∧ 𝜃𝐵𝑆 ⇒ 𝜆𝑆 𝜆𝐶 ∧ 𝜃𝐶𝐻 ⇒ 𝜆𝐻

𝜆𝐺1 ∧ 𝜃𝐺1𝐵 ⇒ 𝜆𝐵 𝜆𝐵 ∧ 𝜃𝐵𝐶 ⇒ 𝜆𝐶 𝜆𝐶 ∧ 𝜃𝐶𝑆 ⇒ ⊥
⊤ ∧ 𝜃𝐺2𝐵 ⇒ 𝜆𝐵 𝜆𝐴 ∧ 𝜃𝐴𝐻 ⇒ 𝜆𝐻

Only the two unit clauses are removed from the formula, and no more
propagation is done. In particular, all unnecessary clauses are still active
after the initial propagation.

The question is: "Does an assignment on a subset of the deterministic

variables exist such that it can extend any projectedmodel of the formula?".
In this case, it can be seen that the partial assignment 𝜆𝐺1 = ⊥, 𝜆𝐻 = ⊤
makes all unnecessary clauses evaluate to ⊤ without forcing any assign-
ment on the probabilistic variables.

⊥ ∧ 𝜃𝐺1𝐴 ⇒ 𝜆𝐴 𝜆𝐵 ∧ 𝜃𝐵𝑆 ⇒ 𝜆𝑆 𝜆𝐶 ∧ 𝜃𝐶𝐻 ⇒ ⊤
⊥ ∧ 𝜃𝐺1𝐵 ⇒ 𝜆𝐵 𝜆𝐵 ∧ 𝜃𝐵𝐶 ⇒ 𝜆𝐶 𝜆𝐶 ∧ 𝜃𝐶𝑆 ⇒ ⊥
⊤ ∧ 𝜃𝐺2𝐵 ⇒ 𝜆𝐵 𝜆𝐴 ∧ 𝜃𝐴𝐻 ⇒ ⊤

A significant consequence of this assignment on 𝜆𝐺1 and 𝜆𝐻 is that all
distributions appearing only in the removed clauses become unconstrained.
Remember that unconstrained distributions do not need to be branched on;
their contribution to the weighted model count can be computed using a
closed-form formulation. Hence, the assignment above reduces the number
of clauses in the formula and significantly reduces the depth of the search
tree.

This example demonstrates that the non-projected variables can be lever-
aged to reduce the number of clauses in our formula 𝐹 . Schlandals solves a
projectedWMC; hence, it looks for interpretations 𝐼 on the projected variables
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that can be extended into amodel of 𝐹 by another interpretation 𝐼 ′ on the non-
projected variables. Since the assignment in the example does not force any
assignment on the projected variables, it can be used in any extension 𝐼 ′. We
now explain how to find such assignments efficiently.

In Schlandals, for an assignment to not be a model of the input formula,
it must generate a clause ⊤ ⇒ ⊥. Some clauses cannot contribute to such
a contradiction by setting a deterministic variable to ⊥ in its implicant (e.g.,
𝜆𝐺1 = ⊥) or its head to ⊤ (e.g., 𝜆𝐻 = ⊤). We formalise this intuition next.
First, let us define the following notion, which will help us define clauses that
might generate a contradiction.

Definition 8 ({⊤,⊥}-reachability). Let 𝐹 be a Schlandals formula over proba-

bilistic variables P . A clause 𝐶𝑖 = (I𝑖 , 𝐻𝑖) ∈ 𝐹 is ⊥-reachable if one of the two
following conditions is met:

1. 𝐶𝑖 is of the form I𝑖 ⇒ ⊥ or I𝑖 ⇒ 𝑃 with 𝑃 ∈ P

2. There exists a clause 𝐶 𝑗 = (I𝑗 , 𝐻 𝑗 ) ∈ 𝐹 such that 𝐶 𝑗 is ⊥-reachable and 𝐻𝑖 ∈ I𝑗 .

Similarly, 𝐶𝑖 is ⊤-reachable if one of the two following conditions is met:

1. There exist no deterministic variables in I𝑖

2. There exists a clause 𝐶 𝑗 = (I𝑗 , 𝐻 𝑗 ) ∈ 𝐹 such that 𝐶 𝑗 is ⊤-reachable and 𝐻 𝑗 ∈ I𝑖 .

Intuitively, a clause (I𝑖 , 𝐻𝑖) is ⊥-reachable if its head might be ⊥ either by
choice (i.e., branching on a probabilistic variable) or constrained (i.e., a unit
clause of the form 𝐻𝑖 ⇒ ⊥). The same reasoning applies for ⊤-reachable
clauses; their implicants might be reduced to ⊤ during the search.

Example: {⊤,⊥}-reachability
Let us show how this notion of {⊤,⊥}-reachability applies to the clauses
used in our example. Below are the clauses after propagating the two unit
clauses 𝜆𝐺2 and ¬𝜆𝑆 using the BUDP algorithm.

𝜆𝐺1 ∧ 𝜃𝐺1𝐴 ⇒ 𝜆𝐴 𝜆𝐵 ∧ 𝜃𝐵𝑆 ⇒ 𝜆𝑆 𝜆𝐶 ∧ 𝜃𝐶𝐻 ⇒ 𝜆𝐻

𝜆𝐺1 ∧ 𝜃𝐺1𝐵 ⇒ 𝜆𝐵 𝜆𝐵 ∧ 𝜃𝐵𝐶 ⇒ 𝜆𝐶 𝜆𝐶 ∧ 𝜃𝐶𝑆 ⇒ ⊥
⊤ ∧ 𝜃𝐺2𝐵 ⇒ 𝜆𝐵 𝜆𝐴 ∧ 𝜃𝐴𝐻 ⇒ 𝜆𝐻

Since the notions of {⊤,⊥}-reachability are based on links between
the clauses, it is helpful to see the set of clauses as a graph. Below is a
graphical representation of the clauses in which there is an edge from a
clause 𝐶𝑖 = (I𝑖 , 𝐻𝑖) to a clause 𝐶 𝑗 = (I𝑗 , 𝐻 𝑗 ) if and only if 𝐻𝑖 ∈ I𝑗 .
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⊤ ∧ 𝜃𝐺2𝐵 ⇒ 𝜆𝐵 𝜆𝐺1 ∧ 𝜃𝐺1𝐵 ⇒ 𝜆𝐵 𝜆𝐺1 ∧ 𝜃𝐺1𝐴 ⇒ 𝜆𝐴

𝜆𝐵 ∧ 𝜃𝐵𝐶 ⇒ 𝜆𝐶 𝜆𝐵 ∧ 𝜃𝐵𝑆 ⇒ ⊥ 𝜆𝐴 ∧ 𝜃𝐴𝐻 ⇒ 𝜆𝐻

𝜆𝐶 ∧ 𝜃𝐶𝑆 ⇒ ⊥ 𝜆𝐶 ∧ 𝜃𝐶𝐻 ⇒ 𝜆𝐻

⊤

⊤ ⊤

⊤ ⊤

⊥

⊥

⊥

⊥ ⊥

A clause is ⊤-reachable if it contains no deterministic variable (i.e., a
𝜆 variable, in our example) in its implicant or is the descendant of a ⊤-
reachable variable. The clause ⊤ ∧ 𝜃𝐺2𝐵 ⇒ 𝜆𝑏 respects the first condition;
hence, all its descendants are⊤-reachable. The same reasoning can be done
for ⊥-reachability. The clauses 𝜆𝐵 ∧ 𝜃𝐵𝑆 ⇒ ⊥ and 𝜆𝐶 ∧ 𝜃𝐶𝑆 ⇒ ⊥ have ⊥
as their head; hence, they, and all their parents, are ⊥-reachable.

Following our earlier discussion, the clauses that are necessary and suffi-
cient for the computation of theweightedmodel count are the ones thatmight
produce a contradiction of the form⊤ ⇒ ⊥. In other words, these clauses are
the ones that are both ⊤-reachable and ⊥-reachable. The following theorem
states that removing the unconstrained clauses from a Schlandals formula 𝐹
does not modify 𝐹 ’s projected models.

Theorem 6. Let 𝐹 = 𝐶1 ∧ . . . ∧ 𝐶𝑛 be a Schlandals formula, on projected

variablesP , reduced by the BUDP algorithm. Assume, without loss of generality,

that the𝑚 ≤ 𝑛 first clauses are either not ⊤-reachable or not ⊥-reachable and
let 𝐹 ′ =𝐶𝑚+1 ∧ . . . ∧𝐶𝑛 . The following equality holds.

pwmc(𝐹,P ) = pwmc(𝐹 ′,P )

Proof. Let B be the set of variables in 𝐹 , P be the projected variables, and
X =B \ P be the non-projected variables. We define B′, P ′, and X ′ simi-
larly for 𝐹 ′.

We will prove this theorem by construction. First, we define a specific set
of deterministic variables and construct an interpretation 𝐼 on that set. Then,
we prove that for any interpretation 𝐼 ′ : B′ ↦→ {⊤,⊥} such that 𝐹 ′ [𝐼 ′] = ⊤
(resp. 𝐹 ′ [𝐼 ′] = ⊥), we have 𝐹 [𝐼 ∪ 𝐼 ′] = ⊤ (resp. 𝐹 [𝐼 ∪ 𝐼 ′] = ⊥).

Let us define the non ⊤- and ⊥-reachable clauses.

C¬⊤ = {𝐶 ∈ 𝐹 | 𝐶 is not ⊤-reachable }
C¬⊥ = {𝐶 ∈ 𝐹 | 𝐶 is not ⊥-reachable } \C¬⊤

By definition, for every clause 𝐶𝑖 = (I𝑖 , 𝐻𝑖) ∈ C¬⊤ there exists a variable
𝑋𝑖 ∈ X such that 𝑋𝑖 ∈ I𝑖 . Similarly, every clause 𝐶 𝑗 = (I𝑗 , 𝐻 𝑗 ) ∈ C¬⊥ is
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such that 𝐻 𝑗 ∈ X . Let X¬⊤ =
⋃
(I,𝐻 ) ∈C¬⊤{𝑋 ∈ I | 𝑋 ∈ X} as the set

of deterministic variables appearing in the implicant of a non ⊤-reachable
clause. Similarly, let X¬⊥ = {𝐻 | (I, 𝐻 ) ∈ C¬⊥} as the set of heads of non
⊥-reachable clauses. Lastly, letX ′ =X¬⊤ ∪X¬⊥.

We nowprove that the interpretation 𝐼 : X ′ ↦→ {⊤,⊥}, defined as follows,
is a valid extension for every model of 𝐹 ′.

𝐼 (𝑋 ) =
{
⊥ if 𝑋 ∈ X¬⊤

⊤ if 𝑋 ∈ X¬⊥

Let 𝐼 ′ : B ↦→ {⊤,⊥} any model of 𝐹 ′ (i.e., 𝐹 ′ [𝐼 ′] = ⊤). The interpretation
𝐼 ′ ∪ 𝐼 must satisfy the clauses in C¬⊤ and C¬⊥ to be a model on 𝐹 . By the
construction of 𝐹 , every clause in C¬⊤ has its implicant evaluating to ⊥ and
every clause in C¬⊥ has its head to ⊤. Moreover, by construction, if 𝐼 ′ is not
a model of 𝐹 ′, then 𝐼 ′ ∪ 𝐼 can not be a model of 𝐹 since 𝐹 ′ is a sub-formula of
𝐹 . □

Algorithm 5 shows the complete propagation operated by Schlandalswhen
a decision is taken for a distribution. First, Boolean Unit and Distribution Prop-
agation is applied, setting the selected variable to true (line 2). Then, all un-
necessary clauses are removed from the residual formula (lines 3-7). This pro-
cess is done in two steps. First, the clauses are marked as {⊤,⊥}-reachable
(lines 4-5). This marking is performed by recursively exploring the set of
clauses, starting from those that satisfy the first conditions of Definition 8.
Then, the adequate sub-routine is called. These sub-routines mark a clause𝐶
and, recursively, all the other clauses whose reachability is induced (i.e., they
respect the second condition of Definition 8) by𝐶 . Marking them allows stop-
ping the exploration when encountering clauses already explored previously
(lines 10,15). Overall, this marking process can be run in time O(|𝐹 | + |𝐸 |)
where |𝐹 | denotes the number of clauses in 𝐹 and |𝐸 | is the number of links be-
tween the clauses. Then, the clauses are filtered using Theorem 6, only keep-
ing the ones that are both ⊤- and ⊥-reachable. In practice, no assignment
is done on the variables; knowing that an assignment on the deterministic
variables exists is sufficient to remove the clauses from the residual formula.

Schlandals’ propagation algorithm can be interpreted in terms of the ini-
tial problem being solved. We saw that it removes clauses related to sub-
graphs that are not on a path from the source to the target for reliability
estimation problems. Moreover, when a partial assignment on the distribu-
tions (i.e., asserting that a subset of the edges is active or not) results in the
source and target being disconnected, Algorithm 5 removes all clauses from
the formula.

For Bayesian networks, it is known that not all the nodes in the network
are necessary for computing the probability of evidence. Indeed, only the
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Algorithm 5: Propagation algorithm of Schlandals.
1 Function Propagate(𝐹, 𝐵, 𝑣)

input : A boolean formula 𝐹 over distributions P
input : A variable 𝐵 ∈ B to set to ⊤
output: The residual formula 𝐹 ′

2 𝐹 ′ ← BUDP(𝐹 , 𝐵, ⊤)
3 foreach 𝐶 = (I, 𝐻 ) ∈ 𝐹 ′ do
4 if 𝐻 = ⊥ or 𝐻 ∈ P then F-Reach(𝐹 ′,𝐶)
5 if 𝑉 ∈ P ∀𝑉 ∈ I then T-Reach(𝐹 ′,𝐶)
6 end
7 𝐹 ′ ← 𝐹 ′ \ {𝐶 ∈ 𝐹 ′ | 𝐶 not ⊤-reachable ∨𝐶 not ⊥-reachable}
8 return 𝐹 ′

9 Function F-Reach(𝐹,𝐶)
input : A boolean formula 𝐹 , a clause 𝐶 = (I, 𝐻 ) of 𝐹

10 if 𝐶 is not marked as ⊥-reachable then
11 Mark 𝐶 as ⊥-reachable
12 foreach 𝐶′ = (I′, 𝐻 ′) ∈ 𝐹 | 𝐻 ′ ∈ I do F-Reach(𝐹,𝐶′)
13 end
14 Function T-Reach(𝐹,𝐶)

input : A boolean formula 𝐹 , a clause 𝐶 = (I, 𝐻 ) of 𝐹
15 if 𝐶 is not marked as ⊤-reachable then
16 Mark 𝐶 as ⊤-reachable
17 foreach 𝐶′ = (I′, 𝐻 ′) ∈ 𝐹 | 𝐻 ∈ I′ do T-Reach(𝐹,𝐶′)
18 end

ancestors of the observed nodes are necessary to compute the probability of
that set. Schlandals’ propagation effectively removes clauses not related to
such nodes.

Algorithm 5 suggests a specific modelling choice: each head of a clause
should be a deterministic variable. Doing so allows the propagation to reduce
the problem when possible. Such a design choice is made for both Bayesian
networks and reliability estimation problems. However, ProbLog programs
do not impose such a restriction, which can hinder performances. Fortu-
nately, as shown in the following example, it is sometimes possible to rewrite
a ProbLog program to favour Schlandals propagation.

Example 22: Reliability estimation in ProbLog revisited
Previously, we showed that reliability estimation problems can be encoded
in ProbLog using the two following clauses for the graph structure:

path(X, Y) :- edge(X, Y).
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path(X, Y) :- edge(X, Z), path(Z, Y).

The first rule encodes the graph’s direct edges, and the second encodes
the path’s transitivity property. Although this encoding works and can be
used with Schlandals, it is only defined in terms of probabilistic variables:
the edges. The snippet below demonstrates how to rewrite the rules to
leverage Schlandals’ propagation. The idea is to add new, non-probabilistic,
terms corresponding to the edges.

1 0.2::edge(gen1,a).
2 0.4::edge(gen1,b).
3 0.8::edge(gen2, b).
4 0.6::edge(b,c).
5 0.1::edge(b,school).
6 0.35::edge(a,hosp).
7 0.05::edge(c,hosp).
8 0.5::edge(c,school).
9 arc(X, Y) :- edge(X, Y).
10 arc(Y, X) :- edge(X, Y).
11 path(X, Y) :- arc(X, Y).
12 path(X, Y) :- arc(X, Z), path(Z, Y).
13 query(path(gen1, hosp)).

In this example, the arc term is non-probabilistic and will be used dur-
ing the grounding process. Although it may seem unnecessary to add such
a term, our experiments will demonstrate that Schlandals benefits from
such an addition.

4.1.2 Branching Heuristic

Many methods have been developed for variable selection algorithms in clas-
sical model counters. Some are based on the structure of the problem (e.g.,
literal counting, tree decomposition), others on the activity of the solvers (e.g.,
conflict-based), or a combination of both (e.g., VSADS). Schlandals’ branch-
ing heuristics are based solely on the structure of the problem but differ from
those previously proposed. Several rationales underlie our choice of a new
structure-based branching heuristic.

First, clause learning is not implemented in Schlandals, making the use
of heuristics such as VSADS impossible. Early experiments of clause learn-
ing showed no significant improvements on our benchmarks while requir-
ing special implementation care to avoid cache corruption [San+04]. More-
over, heuristics based on VSADS require tuning multiple hyperparameters;
VSADS has two parameters that weight each component. Ganak’s heuris-
tics, CSVSADS, has an additional parameter for the cache factor. One of the
aims of Schlandals is to remain simple; hence, we propose a new heuristic
solely based on the problem’s structure, without hyper-parameters to tune.
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Moreover, Schlandals branches on distributions, not variables. Hence, it
must select a group of variables, not a single one. It is possible to adapt ex-
isting branching heuristics for such a case. However, aggregating multiple
variables’ scores is not a trivial choice (e.g., taking the best score among all
variables, their mean, and their median).

The final reason for a new structure-based heuristic is that our heuristic
leverages Schlandals’ Horn structure. More precisely, we explained that a
Schlandals formula 𝐹 can be seen as a directed graph 𝐺 = (C,E) where C
are 𝐹 ’ clauses and there is an edge from (I, 𝐻 ) ∈ C to (I′, 𝐻 ′) ∈ C if and
only if𝐻 ∈ I′. We denote leaves the nodes with no outward edges and sources
the nodes with no inward edges. The reasoning behind our heuristic is the
following. An implication I ⇒ 𝐻 can be seen as a chain reaction: if the
implicant I is true, then the consequence 𝐻 must be true, which, in turn, can
set other implicants to true. The start of these chains of reasoning are clauses
not implied by other clauses: 𝐺 ’s sources.

Hence, our first heuristic selects a distribution which contains a vari-
able appearing in a source node of𝐺 . Schlandals’ propagation ensures that a
projected variable always appears in 𝐺 ’s source nodes. Let us interpret our
heuristic when applied to the problems considered in this work.

We also define a symmetrical heuristic that selects distributions near the
leaves of 𝐺 . The intuition is that a leaf in 𝐺 corresponds to a clause that
implies⊥; hence, its implicantmust be⊥. Hence, assigning distributions near
𝐺 ’s leaves might lead to conflict (i.e., ⊤ ⇒ ⊥) early in the search tree.

Finally, we also implemented a version of the literal counting heuristic
(DLCS) [SBK05a]. This heuristic selects the distribution appearing in themost
clauses.

4.2 Knowledge Compilation in Schlandals

Schlandals is a DPLL-style model counter; hence, the trace of its execution
corresponds to a d-DNNF [HD07]. Similarly to Dsharp, Schlandals can store
its execution trace when it is used as a knowledge compiler. However, unlike
Dsharp, Schlandals does not output d-DNNF diagrams: it directly returns
arithmetic circuits (AC) that automatic differentiation tools and NeSy systems
can use.

4.2.1 From Depth-First Search to Arithmetic Circuit

Let us first illustrate how a search tree can be converted to an arithmetic
circuit.
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Example: Conversion of a Search Tree into an AC
As a small example, let us consider a small Schlandals formula over four
binary distributions P1,P2,P3, and P4. An example of a possible search
tree produced by Schlandals is shown below. For conciseness, only the part
of the sub-tree leading to a model is shown. In the node annotated with a
star, it is assumed that the P4 distribution is fixed during propagation.

𝑃1

𝑃2

∧

𝑃3

⊤

𝑃4

⊤

𝑃3

𝑃4

⊤ ⊤

𝑃2

𝑃3

⊤ ⊤

⊤

𝑃1
2

⊤ ⊤

⊥

⊤

⊤ ⊥

⊥

⊤

⊤ ⊥

★

The coloured box indicates the part matching the arithmetic circuit
shown below. The intuition behind the conversion algorithm is that the
nodes can be transformed into operators (e.g., addition and multiplication),
and the propagated variables can be used as multiplicative factors.



66 Chapter 4. Exact Inference in Schlandals

+

×

𝜔 (𝑃1) +

×

𝜔 (𝑃2) ×

+

×

𝜔 (𝑃3)

+

×

𝜔 (¬𝑃4)

×

𝜔 (¬𝑃2) +

×

𝜔 (𝑃3) +

×

𝜔 (𝑃4)

×

𝜔 (¬𝑃4)

×

𝜔 (¬𝑃1) 𝜔 (¬𝑃4) +

×

𝜔 (𝑃2) +

×

𝜔 (𝑃3)

×

𝜔 (¬𝑃3)

For example, the red and green boxes show how the decision at the
root is transformed into an arithmetic circuit. The root is transformed into
an addition (the sum of the counts of the branches) and has multiplicative
nodes as its children. Eachmultiplicative node has the propagated variables
and the sub-circuit corresponding to the remaining sub-problem as input.
The blue square shows how independent components are transformed.

This example highlights that Algorithm 3 already contains all the neces-
sary information to compute arithmetic circuits. Hence, the onlymodification
needed is to store that information in the cache and post-process it once the
search is finished. These modifications are highlighted in Algorithm 6, which
outlines the search procedure for compilation.

Inmore detail, the cache stores structures instead of the count of each sub-
formula 𝐹 (line 5). These structures contain all the necessary information to
compute 𝐹 ’s arithmetic circuit representation. For each residual formula 𝐹 ′

resulting of branching (lines 6-23), the variables fixed during propagation and
the unconstrained distribution are stored (lines 10-12). Then, each indepen-
dent component is stored as a child of the current cache entry (line 20).

Once the search is complete, the cache can be parsed using Algorithm 7.
This algorithm parses the information stored in the cache to reproduce the
computation made in Algorithm 6. For a given formula, all its branches are
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Algorithm 6: DPLL Search with additional cached information for
compilation
1 Function Schlandals-PWMC(𝐹,P , 𝜔,𝐶)

input : 𝐹 a boolean Horn-formula, over variablesB, in CNF
input : P = ∪𝑛𝑖=1P𝑖 ⊆ B a set of projected variables, partitioned

into 𝑛 distributions
input : 𝜔 a literal-weight function
input : 𝐶 a cache of sub-results
output: pwmc(𝐹,P )

2 if 𝐹 ∈ 𝐶 then return 𝐶 [𝐹 ] .𝑐𝑜𝑢𝑛𝑡
3 if P = ∅ then return 1
4 𝑖 ← a distribution index such that ∃𝑃 ∈ P𝑖 | 𝐵 is not fixed
5 𝐶 [𝐹 ] ← {count : _, subs : []}
6 foreach 𝑃 ∈ P𝑖 do
7 𝐹 ′ ← Propagate(𝐹, 𝑃,⊤)
8 if 𝐹 ′ = ⊥ then return 0
9 𝐶𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡𝑠 ← all connected components of 𝐹 ′

10 cacheChild← {fixed : _, unconstrained : _, children : []}
11 cacheChild.fixed← {𝑃 | 𝑃 ∈ P ∧ 𝑃 = ⊤}
12 cacheChild.unconstrained← ⋃

P𝑗 ∈𝐹∧P𝑗∉𝐹
′ P𝑗

13 fixed← {𝑃 | 𝑃 ∈ P ∧ 𝑃 = ⊤}
14 count𝑃 ←

∏
𝑗 |P𝑗 ∈𝐹∧P𝑗∉𝐹

′
∑

𝑣∈P𝑗
𝜔 (𝑣)

15 count𝑃 ← count𝐵 ×
∏

𝑃∈fixed𝜔 (𝑃)
16 foreach 𝐶𝑜𝑚𝑝 ∈ 𝐶𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡𝑠 do
17 P ′ ← P reduced to the variables in 𝐶𝑜𝑚𝑝

18 𝐶 [𝐶𝑜𝑚𝑝] ← DPLL-PWMC(𝐶𝑜𝑚𝑝,P ′, 𝜔,𝐶)
19 count𝑃 ← count𝐵 ∗𝐶 [𝐶𝑜𝑚𝑝] .𝑐𝑜𝑢𝑛𝑡
20 cacheChild.children.add(𝐶𝑜𝑚𝑝)
21 end
22 𝐶 [𝐹 ].subs.add(cacheChild)
23 end
24 𝐶 [𝐹 ].count← ∑

𝑃∈P𝑖
count𝑃

25 return 𝐶 [𝐹 ]

explored (lines 3-15) and linked to a sum node. For each branch, the propa-
gated variables (line 5), the unconstrained distributions (lines 6-10), and the
independent components (lines 11-13) are linked together using a product
node. Once all sub-problems have been explored, the root of the sub-circuit
is returned (line 14).

Using the search as a basis to perform knowledge compilation presented
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Algorithm 7: Algorithm to convert the trace of Algorithm 7 into
an arithmetic circuit
1 Function compile(𝐶, 𝐹)

input : 𝐶 the cache of sub-results filled using Algorithm 7
input : 𝐹 the CNF (sub-)formula to transform into an arithmetic

circuit
output: The root of a (sub-)arithmetic circuit computing

𝐶 [𝐹 ].count
2 𝑛 ← Node (+)
3 foreach sub ∈ 𝐶 [𝐹 ] .subs do
4 𝑛′ ← Node (×)
5 foreach 𝑃 ∈ sub.fixed do add 𝜔 (𝑃) as child to 𝑛′
6 foreach U ∈ sub.unconstrained do
7 𝑢 ← Node (+)
8 foreach𝑈 ∈ U do add 𝜔 (𝑈 ) as child to 𝑢
9 add 𝑢 as child to 𝑛′

10 end
11 foreach 𝐹 ′ ∈ sub.children do
12 add compile(𝐶, 𝐹 ′) as child to 𝑛′
13 end
14 add 𝑛′ as child to 𝑛
15 end
16 return 𝑛

several advantages. First, any improvement made to the search procedure
directly impacts the compilation. In Chapter 5, we show how to modify the
search to perform incremental and approximate counting; hence, parsing the
cache of such a search procedure still produces a valid arithmetic circuit com-
puting an approximate count.

Moreover, the overhead of Algorithm 7when performing a classical search
(i.e., without the need for a compiled AC) is almost null as the compilation-
specific parts are easily enclosed in a condition. However, it should be noted
that storing the propagated variables, unconstrained distributions, and inde-
pendent components induces a memory overhead, which we evaluate in our
experiments.

4.3 Experimental Evaluation

In this section, we evaluate the performance of the Schlandals solver on the
inference tasks defined in Chapter 2. Before analysing the results, we describe
the data sets and solvers used in our experiments.
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4.3.1 Data sets and Solvers

We compare Schlandals against the following state-of-the-art model counters
and reasoning systems: D4 [LM17a; LM19], GPMC [SHS17], sharpSAT-TD [KJ21],
Ganak1 [Sha+19; SM19; SGM], ExactMC [LMY21], Toulbar2 [SdS06], and
ProbLog [DKT07]. Note thatGanak computes, in theory, (0, 𝛿)-approximations
due to its probabilistic cache. However, in practice, and as noted in the orig-
inal paper, Ganak always returns the true count in our experiments. All
solvers except Schlandals have been compiled and run on their latest avail-
able version as of October 2024. Hence, the results presented in this text
may differ from those presented in the original papers. Indeed, many solvers
are actively developed and periodically enhanced; for example, both D4 and
Ganak received significant updates recently, thereby increasing their perfor-
mance. However, the main takeaways from our experiments are similar to
those in the original publications.

These experiments consider the case of exact weighted model counting to
compute the desired probability within a 600-second time limit. There is no
limit on the size of the cache in our experiments as we compare search-based
model counters and knowledge compilers. While all solvers can be run on
the Bayesian network instances, only the ones supporting projected weighted
model counting (i.e., Schlandals, D4, GPMC, Ganak) and ProbLog can be used
on the reliability estimation instances.

Bayesian Network We used Bayesian networks from the bn-learn repos-
itory [Scu09] and the Grid network from the Cachet benchmarks [SBK05b].
The networks from the bn-learn repository are used in the literature. They
have various sizes (from a few parameters to thousands) and topologies. The
Grid network represents a grid of binary random variables. Each network
node has two outgoing edges to its right and down neighbours if they exist.
Each grid network is a 𝑁 ×𝑁 grid, where 𝑁 ranges from 10 to 50, with a fixed
ratio of deterministic nodes (i.e., nodes whose values are deterministically
determined by their parents’ values) that ranges from 50% to 90%. For each
combination of size and deterministic ratio, ten grid networks are created,
with the deterministic nodes selected at random.

The queries are created as follows. For the networks from the bn-learn
repository, one query is created per network’s leaf, and the goal is to compute
the probability of one of its values, selected randomly. The grid networks have

1Ganak received a significant update for the 2024model counting competition. Its code has
been merged with approxMC, an approximate model counter, and has been heavily rewritten.
Unfortunately, there is no publication describing the changes made to both methods at the
time of this writing. However, the authors kindly provided an executable for this updated and
more performant version of both Ganak and approxMC.
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only one leaf, and the task is to compute the probability that the leaf is true or
false, decided randomly. For both types of networks, no additional evidence
is encoded. Each query is encoded using the encoding presented in Chapter 3
for Schlandals and the ENC4 encoding [CD06] for the other weighted model
counters. We did not use the more efficient ENC4LINP encoding because
ExactMC requires weights to be between 0 and 1; however, the results pre-
sented below are similar when using ENC4 and ENC4LINP. Toulbar2works
directly with the Bayesian network and evidence as input, and the networks
are encoded in ProbLog as shown in Example 2.2.4.

Reliability Estimation For the reliability estimation problem, we use graphs
from the GridKit tool [Med+17; Wie16] that represent the power grid net-
works of Europe and the USA. Each network is further divided by country
for Europe and state for the USA, and the resulting sub-networks are used as
benchmarks. These graphs are undirected, so each edge is encoded with two
clauses. Following previous work, we set each edge’s probability of being
inactive to 0.125 [Due+17]. Five random queries are created for each sub-
network by randomly selecting a pair of connected nodes.

4.3.2 Results

Let us now look at the experimental results. We will answer the following
questions: I) How efficient is Schlandals compared to state-of-the-art solvers?
II) What is the impact of Schlandals’ additional propagation? III) What is the
overhead of Schlandals’ compilation algorithm? IV) Is it beneficial to use
Schlandals as a counting algorithm in ProbLog?

Comparison between Schlandals and state-of-the-art solvers First, let
us compare Schlandals against the state-of-the-art solvers. Figure 4.1 shows
each solver’s proportion of Bayesian networks solved over time. We consider
the networks from the bn-learn (upper part of the figure) and the grid net-
works (lower part) separately as they exhibit different structural properties.
For bn-learn networks, the difficulty of the query is primarily determined by
the queried node and the network topography. On the other hand, grid net-
works have a fixed structure, and the grid size and the amount of determinism
mainly determine their complexity. Moreover, we have two settings for the
bn-learn networks: either the entire network and query are encoded using
either ENC4 or Schlandals’ encoding (left), or the network is pre-processed
to keep only the ancestors of the queried node, and then it is encoded (right).
Such pre-processing is useless for grid networks, as all nodes are required for
query computation.
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Let us first analyse the case of bn-learn networks. It can be seen that
the pre-processing of the network impacts all solvers except Schlandals and
ProbLog. Schlandals’ additional propagation, based on {⊤,⊥}-reachability,
is equivalent to removing all clauses unnecessary to the query. Hence, the
only gain from pre-processing the network is a faster initial propagation for
Schlandals. ProbLog grounding procedure proceeds similarly; every unneces-
sary rule is removed. On the other hand, all other solvers benefit significantly
from the pre-processing, allowing them to solve almost all instances. Over-
all, Schlandals is outperformed by other model counters when the network is
pre-processed, but it can still solve roughly 90% of the instances.

Interestingly, Toulbar2 performance increases slightly with longer run
times; it solves most instances instantaneously and then only a few more.
However, regardless of the pre-processing, it still solves roughly the same
number of instances as the weighted model counters. The best-performing
model counters are D4, GPMC, and ExactMC: they perform relatively simi-
larly and solve all instances in a few seconds when the networks are pre-
processed. Ganak and sharpSAT-TD take more time to solve the instances,
but this is due to their pre-processing, which requires a lot of time. For exam-
ple, sharpSAT-TD computes a tree-decomposition of the formula’s primal
graph using the FlowCutter [Str17] anytime algorithm. It runs until a user-
defined timeout, 120 seconds in our experiments, and then the solver starts
the model count algorithm. Ganak, among other things, computes a tree de-
composition and independent support for difficult instances, both of which
require time.

Finally, ProbLog does not perform well, which is expected. Indeed, while
it is possible to encode BN in ProbLog, it can not benefit from the optimi-
sations developed for the CNF encodings (e.g., reusing the same variable for
multiple entries in a CPT). Hence, it can solve only the easiest instances.

The situation is different for the grid networks. In this case, Schlandals
perform theworst, solving only 40% of the instances, while the best-performing
weighted model counters solve almost 90% of the instances. After analysing
Schlandals’ behaviour on these instances, we observed that it struggles to
solve most instances due to a very deep search tree (e.g., up to a depth of
200). One possible explanation for such a deep search tree is our simple dis-
tribution selection heuristic. Because it is too simplistic, it does not make
appropriate decisions (e.g., it does not favour decomposition or consider con-
flicts), drastically increasing the search space.

Figure 4.2 shows the proportion of instances solved for the reliability es-
timation problems. All solvers behave similarly; most of the instances they
solve are solved in a few seconds, and then there is a long plateau with very
few instances additionally solved. Overall, it can be seen that Schlandals is
the best-performing model counter, and ProbLog performs better than pure
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Figure 4.1: Proportion of solved instances over time, with a timeout of 600
seconds, for Bn-learn (up) and grid (down) Bayesian networks. The Bn-learn
networks are either fully encoded in CNF (left) or pre-processed to keep only
nodes relevant to the query (right). The lines stop when no more queries are
solved.
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Figure 4.2: Proportion of solved instances over time, with a timeout of 600
seconds, for reliability estimation problems. The lines stop when no more
queries are solved.

model counters.
Overall, it can be seen that Schlandals performance depends on the prob-

lem type. It performs less well for Bayesian networks than state-of-the-art
model counters with an optimised encoding. Schlandals’ encoding is less op-
timised than ENC4; it lies between ENC1 and ENC3. Hence, it is expected that
Schlandals performs less well on Bayesian networks. However, for reliabil-
ity estimation problems, all solvers share the same encoding, and Schlandals
performs the best.

Overhead of the compilation Let us now analyse the relative perfor-
mance of various settings for Schlandals. First, let us compare Schlandals’
search and compilation algorithms. Figure 4.3 (left) shows the relative per-
formance of the search against the compilation. Before analysing the result,
let us briefly explain how to read such a graph. It is a scatter plot in which
each data point is an instance (i.e., a Bayesian network or a reliability esti-
mation problem). The coordinates of each point are given by the run time of
each method: an instance at (𝑥 = 10, 𝑦 = 30) takes 10 seconds to be solved by
the search and 30 seconds to be compiled. The solid black line represents the
𝑦 = 𝑥 line. Hence, computing the count of instances on the diagonal takes
as much time for the search as it does for the compilation. Instances above
(resp. below) the diagonal are solved faster with the search (resp. with the
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Figure 4.3: Relative performance of Schlandals’ search against Schlandals’
compilation (left) and Schlandals’ search with only the BUPD algorithm as
propagation (right)

compilation). Finally, each instance was run five times, and the average run
time is reported. Instances not solved by both instances are not plotted; if an
instance is solved by one method but not the other, it is placed at 600 on the
axis corresponding to the latter method.

Let us now analyse the overhead induced by the compilation. It can be
seen that all instances align on the diagonal; hence, there is no overhead for
performing knowledge compilation in Schlandals. There are a few exceptions,
but they can be solved in under a second; hence, a slight variance is expected
for such small instances. It can be surprising given Schlandals’ compilation
algorithm: it first executes the search with a modified cache structure and
then parses it to create an arithmetic circuit. Hence, the compilation takes
at least as much time as the search. Let us first observe that most of the
overhead comes from the modified cache structure and the memory overhead
it induces. Indeed, post-processing the cache is fast: only the satisfiable part
of the search space is compiled, and there is no need to perform branching
and propagation as all the necessary information is stored in the cache. Our
experimental results imply that the memory overhead is limited. In practice,
the overhead induced by our modified cache structure is equivalent to the
size of the arithmetic circuit being built. Indeed, each element stored in the
cache is used to create nodes in the circuit: the elements propagated to ⊤,
the unconstrained distributions, and the references to children. Hence, the
additional memory used corresponds to the number of edges in the circuit. In
particular, the memory footprint of our compilation algorithm is equivalent
to directly creating the NNF diagram during the search.
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Figure 4.4: Relative performance of Schlandals’ min-in degree branching
heuristic against Schlandals’min-out branchingheuristic (left) and theDLCS
heuristic (right).

Impact of Schlandals’ additional propagation Next, we analyse the ben-
efits of Schlandals’ additional propagation (i.e., removing clauses not⊤-reachable
or⊥-reachable). Figure 4.3 (right) shows the relative performances of Schlandals
with this propagation against Schlandals search using only the boolean unit
propagation and the distribution constraints. In both cases, the pre-processing
still applies the additional propagation; hence, any benefit of our additional
propagation is gained during the search. It can be seen that the additional
propagation is crucial for Schlandals efficiency; if only the boolean unit prop-
agation and the distribution constraints are applied, Schlandals solves much
fewer instances and less quickly. For example, several Bayesian networks that
were solved in a few seconds with complete propagation are solved in more
than a hundred seconds without it.

It can be easily understood when considering reliability estimation prob-
lems. When the choices for the distributions (i.e., the edges) result in the
source and target being disconnected, the problem is solved, and Schlandals’
propagation removes all clauses from the residual formula. However, when
such propagation is not done, the solver explores the residual formula even if
it does not impact the count. More generally, our additional propagation al-
lows Schlandals to detect and remove parts of the problem that do not impact
the count. Without it, additional branching must occur, which increases the
search tree’s depth and degrades its performance.

Comparison of Schlandals’ branching heuristics Figure 4.4 shows the
comparisons of Schlandals’ min-in degree heuristic against its min-out de-
gree heuristic and the DLCS heuristic [SBK05a]. While it is known that the
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literal-counting heuristic underperforms compared to mixed heuristics such
as VSADS, it can be implemented in Schlandals as it is not a failure-based
heuristic. Hence, we use it as a baseline for our heuristic.

Overall, the min-in-degree heuristic outperforms the two others, espe-
cially on Bayesian networks. However, for reliability estimation problems,
the min-out degree heuristics performs slightly better. For some networks’
topologies, starting branching near the target node might be advantageous
(e.g., a target node linked by a single edge to the rest of the graph). Such
behaviour opens the question of more refined branching heuristics, such as
ones based on tree decomposition. Analysing the problem’s structure (i.e.,
the graph of clauses) can be beneficial for reliability estimation problems.

Schlandals as InferenceMechanism in ProbLog We analyse the impact
of using Schlandals as the inference mechanism in ProbLog. We have seen
previously that Schlandals, when used as a standalone tool, performs bet-
ter than ProbLog. We now analyse in more detail if using Schlandals as the
inference tool in ProbLog has benefits. Figure 4.5 (left) shows the relative per-
formance of using Schlandals in ProbLog against the default ProbLog infer-
ence algorithm. Several small instances (i.e., solved in less than ten seconds)
can be solved by both methods, and the ProbLog default counting method is
sometimes slightly faster than using Schlandals. However, many instances
are solved faster using Schlandals or can only be solved using Schlandals. In
particular, for the reliability estimation problems used in this work, there are
positive cycles in the initial ProbLog program; hence, using Schlandals allows
for drastically decreasing the size of the CNF formula.

Finally, we analyse the impact of the initial ProbLog program on the per-
formance of Schlandals. In particular, reliability estimation problems can be
encoded in various ways in ProbLog. We have explored the classical way of
encoding this problem in Chapter 2: each edge (𝑥,𝑦) with probability 𝑝 is en-
coded with a probabilistic fact p::edge(x, y)., and the path transitive prop-
erty is encoded using the rules path(X, Y) :- edge(X, Y). and path(X, Y)

:- edge(X, Z), path(Z, Y).. However, such a structure is not optimal for
Schlandals as it only relies on probabilistic facts. In Chapter 3, we proposed
an alternative encoding by adding new non-probabilistic facts arc(X, Y) :-

edge(X, Y). and by rewriting the transitive property rules using the arc

terms instead of the edge terms. Figure 4.5 (right) shows the relative perfor-
mance of this new arc-encoding against the classical ProbLog encoding. For
both encodings, ProbLog uses Schlandals as a weighted model counting algo-
rithm. It can be seen that, in addition to solving the instances more quickly,
many instances can not be solved without the arc-encoding.
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Figure 4.5: Left) the relative performance of ProbLog with Schlandals as
counting algorithm against default ProbLog inference mechanism. Right)
the relative performance of ProbLog using Schlandals as counting algorithm
on reliability problem estimationwith the classical encoding against the arc-
based encoding.

4.4 Conclusion

This chapter explored how to modify a classical DPLL-style search-based
model counter to calculate the weighted model count of a Schlandals for-
mula. We developed a new search-based, DPLL-style model counter (also
named Schlandals) for this purpose. We showed that minor modifications to
the classical exhaustive DPLL search algorithm allow computing the count of
a Schlandals formula. Moreover, we developed a new algorithm that lever-
ages the Horn structure of the formulas to simplify them during the search.
Additionally, an interface to Schlandals has been implemented in ProbLog, al-
lowing us to run ProbLog programs with Schlandals as a counting algorithm.

We evaluated the performance of Schlandals against state-of-the-art weighted
model counters and reasoning systems on two problems: Bayesian network
inference and reliability estimation problems. Our experiments showed that
Schlandals is competitive with other solvers: on Bayesian networks, it solves
most instances, except for the more difficult Grid networks, and it outper-
forms the other solvers on reliability estimation problems. Our experiments
also highlighted that pre-processing the Bayesian networks is essential for the
performance of model counters, but Schlandals propagation performs such
operation natively. We also analysed the impact of various Schlandals’ com-
ponents on its performance and showed that our algorithm for simplifying a
Horn formula is essential for Schlandals’ efficiency. Finally, our experiments
demonstrate that ProbLog benefits from using Schlandals on the studied prob-
lems; however, it can require rethinking the structure of ProbLog programs
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by introducing non-probabilistic terms for reliability estimation problems.



Approximate Inference in
Schlandals 5
The algorithm developed in Chapter 4 computes the weighted model count
of a formula and returns it when the whole search space has been explored.
Given that computing the WMC of a formula is #𝑃-Complete, it might be
infeasible in a reasonable amount of time. However, most of the time, com-
puting the exact probability is unnecessary. For example, in medical diag-
nosis [Shw+91; Pra+94], a disease is diagnosed in a patient if the probability
that the patient has the disease exceeds a threshold set by the expert. Hence,
computing the exact probability is unnecessary; a lower bound is sufficient.

This chapter introduces algorithms that can be used to compute approx-
imations of the WMC. In particular, the methods proposed in this work pro-
vide both a lower and an upper bound on the true WMC. We first explain
how Schlandals’ search algorithm can be modified to compute bounds on the
weighted model count and then provide two algorithms that provide error-
bounded approximations of the true weighted model count.

This chapter is based on the following articles:

■ A. Dubray, P. Schaus, and S. Nijssen. “AnytimeWeightedModel Count-
ing with Approximation Guarantees for Probabilistic Inference”. In:
LIPIcs, Volume 307, CP 2024 307 (2024). Ed. by P. Shaw. issn: 1868-8969.
doi: 10.4230/LIPICS.CP.2024.10. (Visited on 03/07/2025)

■ L. Dierckx, A. Dubray, and S. Nijssen. “Learning from Logical Con-
straints with Lower- and Upper-Bound Arithmetic Circuits” Interna-
tional Joint Conference on Artificial Intelligence (IJCAI) 2025.

The content presented in Section 5.5 has not been published before, and
supplementary experiments have been conducted.

5.1 Intuition and Motivation

Many algorithms have been developed for approximate (weighted) model
counting or probabilistic inference (e.g., [Cha+14; Gom+07; LMY22; SGM;
SM19; Vla+15; GD11]) They often rely on some sampling and provide statisti-
cal guarantees. For example, SampleSAT [Gom+07] andPartialKC [LMY22]
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are unweightedmodel counters providing estimations on the truemodel count.
SampleSAT provides a correct lower bound with a given probability, while
PartialKC aims to provide an unbiased estimate of the count. There are
only a fewmethods explicitly designed forweighted problems [Cha+14; GD11],
but they often suffer from the same problem: the bounds returned on the
WMC might be invalid. ProbLog allows the computation of true bounds on
the probability of a query, but it is limited to the inference of a ProbLog pro-
gram [Vla+15].

One benefit of sampling-based approaches is that they are anytime. That
is, they can be stopped at any time during their execution and still return
a result, and the longer they run, the more accurate the result is (e.g., the
probability of SampleSAT’s lower bound being wrong decreases with the
runtime). Hence, it is possible to obtain an excellent estimate of the true
(weighted) model count by running the methods for a sufficiently long time.

To our knowledge, noweightedmodel counter provides deterministic lower

and upper bounds on the true weighted model count. This chapter explores
how Schlandals can be adapted to produce such bounds. Subsequently, we
demonstrate that adapting Schlandals’ search strategy allows providing these
bounds in an anytime fashion: the solver iteratively produces bounds that
become tighter at each iteration. For the rest of this chapter, we consider
Schlandals formulas that cannot be solved exactly within the allowed time
limit. In practice, this means that some of the children of some nodes in the
search tree are unexplored.

5.2 Counting Unsatisfying Assignments

Calculating the weighted model count of a propositional formula can be seen
from two perspectives. The first chapters of this work present the classical
approach. It consists of finding all satisfying interpretations of the formula
and summing their weights. The other perspective can be seen as solving
a dual problem; that is, computing the weighted sum of the non-satisfying
assignments of the formula. These two problems are complementary. In par-
ticular, the weighted sum of satisfying and non-satisfying assignments is 1
for probabilistic inference.

Example 24: Duality of Weighted Model Counting
Let us demonstrate this duality on the boolean formula considered in Chap-
ter 2: 𝐹 = (𝐴 ∨ ¬𝐵) ∧ (¬𝐴 ∨ 𝐶 ∨ 𝐷) ∧ (¬𝐴 ∨ ¬𝐶) with P = {𝐴, 𝐵}. The
weight function 𝜔 is defined as follows: 𝜔 (𝐴) = 0.6, 𝜔 (¬𝐴) = 0.4, 𝜔 (𝐵) =
0.2, 𝜔 (¬𝐵) = 0.8. We computed in Chapter 2 that

pwmc(𝐹, {𝐴, 𝐵}) = 0.92.
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In particular, the only assignment on {𝐴, 𝐵} that cannot be extended in a
model of 𝐹 is 𝐼 (𝐴) = ⊥, 𝐼 (𝐵) = ⊤ because the first clause always evaluates
to ⊥. The weight of this assignment is as follows.

𝜔 (¬𝐴) × 𝜔 (𝐵) = 0.4 × 0.2 = 0.08 = 1 − 0.92

This example illustrates twomethods for computing a formula’s weighted
model count: summing the number of satisfying or non-satisfying assign-
ments. This observation is not new and has been made by Möhle and Biere
in the case of unweighted projected model counting [MB18]. Möhle and Biere
proposed to create two propositional formulas to represent the input formula
𝐹 or its negation ¬𝐹 . Then, they observed that finding unsatisfying assign-
ments on the formula representing ¬𝐹 correspond to models of 𝐹 . On the
contrary, our approach does not create new formulas but reasons about 𝐹 ’s
unsatisfying assignments to derive an upper-bound on the weighted model
count. Hence, our method differs conceptually from the one of Möhle and
Biere, leading to two different solvers.

Following the naming convention introduced by Möhle and Biere, we call
the problem of computing the weighted sum of unsatisfying assignments the
dual (projected) weighted model counting problem and denote it pwmc(𝐹,P )
for a Schlandals formula 𝐹 and projected variables P . The following propo-
sition connects the two counting problems.

Proposition 1. Let 𝐹 be a literal-weighted boolean formula over variables B
with weight function 𝜔 and distributions P = ∪𝑛𝑖=1P𝑖 . The following equality

holds.

pwmc(𝐹,P ) + pwmc(𝐹,P ) =
𝑛∏
𝑖=1

∑︁
𝑃∈P𝑖

𝜔 (𝑃) (5.1)

Proof. The proof is similar to that of Theorem 5. The weight of each possible
assignment must be counted as both satisfying and unsatisfying assignments
are summed up; this is similar to the case in which distributions are uncon-
strained. □

This proposition states that the sum of all interpretations of a boolean
formula can be expressed in closed-form formulation. Using this proposition,
we can derive an upper bound on the true weighted model count when the
search space is partially explored. Let us denote 𝐿𝐵⊤(𝐹,P ) (resp. 𝐿𝐵⊥(𝐹,P ))
a partial evaluation of the weighted sum of satisfying (resp. unsatisfying)
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assignments on 𝐹 . Then, we have the following relationships.

𝐿𝐵⊤(𝐹,P ) ≤ pwmc(𝐹,P ) (5.2)
𝑛∏
𝑖=1

∑︁
𝑃∈P𝑖

𝜔 (𝑃) − 𝐿𝐵⊥(𝐹,P ) ≥ pwmc(𝐹,P ) (5.3)

Equation (5.2) follows directly from the definition of 𝐿𝐵⊤(𝐹,P ) and Equa-
tion (5.3) is easily derived from Proposition 1. Equation (5.2) can be used to
calculate a lower bound on the true model count. A key observation is that
DPLL-style search algorithms, such as Schlandals’ search algorithm, compute,
by design, a valid value for 𝐿𝐵⊤(𝐹,P ) if the search space is partially explored.
Intuitively, when Schlandals branches on a distributionP𝑖 = {𝑃1

𝑖 , . . . , 𝑃
𝑘
𝑖 }, the

weighted model count of 𝐹 can be written as follows.

pwmc(𝐹,P ) =
𝑘∑︁
𝑗=1

𝜔 (𝑃 𝑗

𝑖
) × pwmc(𝐹 [𝑃 𝑗

𝑖
= ⊤],P \ P𝑖)

Hence, evaluating partially this sum results in a lower bound of the true count.
The remaining question is how to compute the sum of unsatisfying assign-
ments to obtain 𝐿𝐵⊥(𝐹,P ).

5.3 Solving the Dual Weighted Model Counting Problem

With fewmodifications, Schlandals can solve the dual-weightedmodel count-
ing problem. We first present the particularity of counting unsatisfying as-
signments and then give a modified DPLL-style search that solves both count-
ing problems simultaneously. For the rest of this section, let us assume that
𝐹 is the Schlandals formula being considered and P = ∪𝑛𝑖=1P𝑖 its distribu-
tions. Similarly to classical weighted model counting, the count of unsatisfy-
ing interpretations is computed from the propagation result and the count of
sub-problems.

DetectingUnsatisfyingAssignments fromPropagation When descend-
ing in the search tree, computing the WMC of a Schlandals formula using Al-
gorithm 3 can be seen as constructing models (i.e., satisfying assignments to
the distributions). Setting a probabilistic variable to⊤ during the propagation
adds this assignment to the model under construction. However, computing
unsatisfying assignments is slightly different: forcing a distribution’s variable
𝑃𝑖 ∈ P𝑖 to ⊥ means that any interpretations with 𝑃𝑖 = ⊤ cannot be a model
of the formula. Hence, when setting a variable to ⊥ during propagation, the
weight of all interpretations containing this variable can be added to the sum
of unsatisfying assignments.
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Example: Unsatisfying Assignments from Propagation
Let P1 = {𝑃1

1 , 𝑃
2
1 } and P2 = {𝑃1

2 , 𝑃
2
2 } be two distributions and

𝐹 = (𝑃1
1 ⇒ 𝐴) ∧ (𝑃1

2 ∧𝐴⇒ ⊥)

be a Schlandals formula. The truth table for 𝐹 is shown below.

P1 P2 Projected model of 𝐹

𝑃1
1 𝑃1

2 ⊥
𝑃1
1 𝑃2

2 ⊤
𝑃2
1 𝑃1

2 ⊤
𝑃2
1 𝑃2

2 ⊤

Let us assume that the solver branches on P1 = 𝑃1
1 . It forces 𝐴 = ⊤

which, in turn, forces P2 = 𝑃1
2 . Hence, assigning P1 = 𝑃1

1 forces 𝑃2
2 = ⊥,

disallowing the solver to branch on the only unsatisfying assignment of
𝐹 . After such assignments, that branch’s weighted count of unsatisfying
assignments can be computed as 𝜔 (𝑃1

1 ) × 𝜔 (𝑃2
2 ).

Let us formalise the intuition of the previous example. Let us assume,
without loss of generality, that Schlandals is solving a formula 𝐹 on 𝑛 distri-
butions and branches on P1 = 𝑃1

1 . Let 𝐹
′ be the residual formula without P1

and dom(P𝑖) (resp. dom′(P𝑖)) denotes the domain (i.e., either all unassigned
variables in P𝑖 or its only variable set to ⊤) before (resp. after) propagation.
Then, the following equality holds:

𝑛∏
𝑖=2

∑︁
𝑃 ′∈dom′ (P𝑖 )

𝜔 (𝑃 ′) ≤
𝑛∏
𝑖=2

∑︁
𝑃∈dom(P𝑖 )

𝜔 (𝑃). (5.4)

Indeed, since the propagation only removes elements from the domains,
we have that ∀𝑖 dom′(P𝑖) ⊆ dom(P𝑖). We argue that the weighted sum of
interpretations set as unsatisfying during the propagation is given by

𝜔 (𝑃1
1 ) ×

©«
𝑛∏
𝑖=2

∑︁
𝑃∈dom(P𝑖 )

𝜔 (𝑃) −
𝑛∏
𝑖=2

∑︁
𝑃 ′∈dom′ (P𝑖 )

𝜔 (𝑃 ′)ª®¬ (5.5)

The reasoning is the following. Both side of Inequality 5.4 represents the
maximum weighted model count of 𝐹 ′ in two different settings. On the right-
hand side, it is its maximumWMC if onlyP1 is removed from 𝐹 . The left-hand
side represents the actual maximum WMC, taking into account the effect of
Schlandals’ propagation. The left-hand side is smaller because the propaga-
tion removed some interpretations from the set of possiblemodels. Hence, the
difference between these two values corresponds to the weighted sum of the
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interpretations detected as unsatisfying during the propagation. Finally, this
computation is performed for 𝐹 ′’s interpretations, which do not contain P1.
Hence, this value must be multiplied by the weight of the variable branched
on, 𝑃1

1 in this case.

Example: Unsatisfying Assignments from Propagation (cont.)
Following our previous example, the only distribution remaining after branch-
ing on P1 is P2. We have dom(P2) = {𝑃1

2 , 𝑃
2
2 } and dom′(P2) = {𝑃1

2 }.
Hence, the weighted sum of unsatisfying assignments in the branch is
given by

𝜔 (𝑃1
1 ) ×

(
(𝜔 (𝑃1

2 ) + 𝜔 (𝑃2
2 )) − 𝜔 (𝑃1

2 )
)
= 𝜔 (𝑃1

1 ) × 𝜔 (𝑃2
2 )

Unsatisfying Assignments for Independent Components In classical
model counting, when a formula 𝐹 is decomposed into 𝑘 independent compo-
nents 𝐹 1, . . . , 𝐹𝑘 , their count is multiplied by each other. Intuitively, a model
of 𝐹 is an element in the cartesian product of its components model space: it
must be a model of each component. However, for unsatisfying assignments,
it does not work like that: an interpretation on 𝐹 results in a contradiction
if at least one of the components is unsatisfied. Fortunately, it is possible to
derive an equation for the dual-weighted model count of 𝐹 using proposition
Proposition 1.

Let us denote P 𝑖 the projected variables appearing in the 𝑖-th indepen-
dent component and max(𝐹,P ) = ∏𝑛

𝑖=1
∑

𝑃∈P𝑖
𝜔 (𝑃). We define max(𝐹 𝑖 ,P 𝑖)

similarly for the independent components. The following equation provides
the formula for calculating the weighted sum of unsatisfying assignments for
independent components.

max(𝐹,P ) −
𝑘∏
𝑖=1

©«max(𝐹 𝑖 ,P 𝑖) − pwmc(𝐹 𝑖 ,P 𝑖)︸                                ︷︷                                ︸
max value for 𝑝𝑤𝑚𝑐 (𝐹 𝑖 ,P 𝑖 )

ª®®®¬︸                                         ︷︷                                         ︸
max value for 𝑝𝑤𝑚𝑐 (𝐹,P )

(5.6)

Equation (5.6) can be interpreted as follows. Each component is possibly
partially solved; hence, pwmc(𝐹 𝑖 ,P 𝑖) is the (partial) sum of unsatisfying as-
signments of component 𝐹 𝑖 . It follows thatmax(𝐹 𝑖 ,P 𝑖)−pwmc(𝐹 𝑖 ,P 𝑖) is the
maximum value that the weighted model count of 𝐹 𝑖 can take (i.e., all unex-
plored interpretations of 𝐹 𝑖 are models). Hence, the product in Equation (5.6)
is the product of componentmaximum possible weighted model count; that is,
the maximum possible weighted model count for 𝐹 . Subtracting this value
from the theoretical maximum value for pwmc(𝐹,P ) results in the weighted
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sum of all assignments detected as unsatisfying. The benefit of Equation (5.6)
is that it provides a closed-form formulation to compute the dual-weighted
model count for independent components as a product. Hence, it can be easily
integrated into Schlandals’ search algorithm.

Algorithm 8: DPLL-based algorithm for solving the dual weighted
model count problem
1 Function Dual-PWMC(𝐹, P, 𝜔,𝐶)

input : 𝐹 a boolean Horn-formula, over variables B, in CNF
input : P = ∪𝑛𝑖=1P𝑖 ⊆ B a set of projected variables, partitioned

into 𝑛 distributions
input : 𝜔 a literal-weight function
input : 𝐶 a cache of sub-results
output: The weighted count of the unsatisfying assignments of 𝐹

2 if 𝐹 ∈ 𝐶 then return 𝐶 [𝐹 ]
3 if P = ∅ then return 0
4 𝑖 ← a distribution index such that ∃𝑃 ∈ P𝑖 | 𝑃 is not fixed
5 𝑚𝑎𝑥𝑅𝑒𝑠𝑖𝑑𝑢𝑎𝑙 ←∏𝑛

𝑗=1 | 𝑗≠𝑖
∑

𝑃 ′∈P𝑗
𝜔 (𝑃 ′)

6 foreach 𝑃 ∈ P𝑖 do
7 𝐹 ′ ← Propagate(𝐹, 𝑃,⊤)
8 if 𝐹 ′ = ⊥ then 𝑐𝑜𝑢𝑛𝑡𝑃⊥ ←𝑚𝑎𝑥𝑅𝑒𝑠𝑖𝑑𝑢𝑎𝑙 × 𝜔 (𝑃)
9 else
10 𝑝𝑟𝑜𝑝⊥ ← 𝜔 (𝑃) ×

(
𝑚𝑎𝑥𝑅𝑒𝑠𝑖𝑑𝑢𝑎𝑙 −∏𝑛

𝑗=1 | 𝑗≠𝑖
∑

𝑃 ′∈P𝑗
𝜔 (𝑃 ′)

)
11 fixed← {𝑃 ′ | 𝑃 ′ ∈ P ∧ 𝑃 ′ = ⊤}
12 𝑝 ←∏

𝑃 ′∈fixed𝜔 (𝑃 ′)×
∏

𝑗 |P𝑗 is unconstrained in 𝐹 ′
∑

𝑃 ′∈P𝑗
𝜔 (𝑃 ′)

13 𝐶𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡𝑠 ← all connected components of 𝐹 ′
14 foreach 𝐶𝑜𝑚𝑝 ∈ 𝐶𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡𝑠 do
15 P′ ← P reduced to the variables in 𝐶𝑜𝑚𝑝

16 𝐶𝑜𝑚𝑝⊥ ← Dual-PWMC(𝐶𝑜𝑚𝑝, P′, 𝜔,𝐶)
17 𝐶𝑜𝑚𝑝⊥ ← max(𝐶𝑜𝑚𝑝, P′) −𝐶𝑜𝑚𝑝⊥
18 end
19 𝑐𝑜𝑢𝑛𝑡𝑃⊥ ← max(𝐹, P) −∏

𝐶𝑜𝑚𝑝 𝐶𝑜𝑚𝑝⊥
20 𝑐𝑜𝑢𝑛𝑡𝑃⊥ ← 𝑐𝑜𝑢𝑛𝑡𝑃⊥ × 𝑝 + 𝑝𝑟𝑜𝑝⊥
21 end
22 end
23 𝐶 [𝐹 ] ← ∑

𝑃∈P𝑖 𝑐𝑜𝑢𝑛𝑡
𝑃
⊥

24 return 𝐶 [𝐹 ]
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A DPLL-Style Algorithm for Solving the Dual Counting Problem Al-
gorithm 8 shows how to solve the dualweightedmodel counting on a Schlandals
formula. The algorithm’s structure is similar to the classical Schlandals’ search
algorithm: a cache is used to store count of sub-formulas (lines 2,23), it branches
on all the value of a distribution (lines 4-22), and it recursively solves the in-
dependent components (lines 13-18) of the residual formula after propagation
(line 7).

As explained above, Algorithm 3 differs from Algorithm 8 when comput-
ing the weighted model count. When the formula is empty, a satisfiable leaf
has been found, and 0 is returned (line 3). On the contrary, when the residual
formula, after propagation, is unsatisfiable, then the weighted sum of all its
interpretations is computed using Proposition 1 and multiplied by 𝜔 (𝑃) as 𝑃
is forced in that branch (line 8).

If the residual formula is not ⊥, then the count is computed as described
above. First, the count of the interpretations detected as unsatisfying dur-
ing propagation is computed using Equation (5.5) (line 10). Then, the dual
weighted count of the independent components is computed using Equa-
tion (5.6) (lines 17,19). Finally, these two values are summed together (line 20).
It is crucial to multiply the results of the recursive calls by the weights of the
variables set to⊤ during the propagation and the weight of the unconstrained
distributions. Indeed, in the sameway that classical weighted model counting
builds interpretations using propagation, the unsatisfying assignments found
during recursive calls extend these assignments.

For simplicity, we presented Algorithm 3 and Algorithm 8 as two separate
algorithms; however, given their similar structure, it is clear that both prob-
lems can be solved during a single search. All computations stay the same;
the only modification needed is to store a tuple in the cache instead of a single
count. Hence, we can assume that Schlandals computes both counts simulta-
neously and returns a tuple (𝑝⊤, 𝑝⊥) such that 𝑝⊤ + 𝑝⊥ = 1 at the root. If it
times out, then a lower bound is given by 𝑝⊤ and an upper bound by 1 − 𝑝⊥.

Schlandals is, to the best of our knowledge, the only model counter com-
puting an upper bound on the weighted model count in this manner. How-
ever, computing upper bounds has been explored in other solvers, and in par-
ticular in Toulbar2 [Vir+16]. It allows computing a lower and an upper
bound on the true probability in the following manner. During its search, it
computes an upper bound on the probability mass of the sub-problem. Then,
based on pre-defined approximation criteria, it chooses to explore or not these
sub-problems. If a sub-problem is not explored, its probability mass is added
to a global counter. At the end of the search, the computed probability serves
as a lower bound, as some parts of the search space remain unexplored. The
unexplored probability mass can be used to provide an upper bound on the
probability.
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However, several key differences exist between our algorithm and the one
proposed in Toulbar2. Our method can be stopped anytime, and it provides
an upper bound on the count. On the other hand, Toulbar2’s approximation
algorithm suffers from a key limitation: if the method times out, it can only
compute an upper-bound on the explored search space

1. Moreover, our upper-
bound calculation is optimised for the type of model we work with: it relies
on the fact that only projected variables have weights, integrates the bound
calculation with domain propagation, and can be integrated into any DPLL-
style algorithm with little overhead.

5.3.1 From Bounds to 𝜀-approximations

Most existing works do not return bounds on the true WMC; they provide
𝜀-approximation from which bounds can be derived. As a reminder, a value
𝑝 is an 𝜀-approximation of a value 𝑝 if the following equation holds:

𝑝

1 + 𝜀 ≤ 𝑝 ≤ 𝑝 (1 + 𝜀). (5.7)

An 𝜀-approximation give bounds on the true probability; fromEquation (5.7)
it follows that 𝑝 ≤ 𝑝 (1+𝜀) and 𝑝 ≥ 𝑝

1+𝜀 . We prove that the relation can also be
in the other direction: it is possible to derive an 𝜀-approximation from bounds
on 𝑝 . To do so, let us first show in which condition it is possible to derive an
𝜀-approximation for a pre-defined 𝜀.

Theorem 7. Let 𝐹 be a boolean formula, 𝑝 its weighted model count, and 𝜀 ≥ 0
an error factor. Moreover, let 𝑝𝑙 ≤ 𝑝 be a lower bound on 𝑝 and 𝑝𝑢 ≥ 𝑝 an upper

bound on 𝑝 . If 𝑝𝑢 ≤ 𝑝𝑙 (1 + 𝜀)2, then the following inequalities hold.

𝑝

1 + 𝜀 ≤
√
𝑝𝑙 × 𝑝𝑢 ≤ 𝑝 (1 + 𝜀)

Proof. Let us first prove the left part of the inequality. By definition, we have
that 𝑝 ≤ 𝑝𝑢 and, by assumption, 𝑝𝑢

(1+𝜀 )2 ≤ 𝑝𝑙 . Hence, the following relations
hold.

𝑝2 ≤ 𝑝2𝑢 ⇔
𝑝2

(1 + 𝜀)2 ≤
𝑝2𝑢
(1 + 𝜀)2 =

𝑝𝑢𝑝𝑢

(1 + 𝜀)2 ≤ 𝑝𝑙 × 𝑝𝑢

⇔

√︄
𝑝2

(1 + 𝜀)2 =
𝑝

1 + 𝜀 ≤
√
𝑝𝑙 × 𝑝𝑢

1After discussing this issuewith the developers of Toulbar2, they changed this behaviour.
Hence, recent implementations of Toulbar2 compute valid bounds even when the solver
times out.
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We prove the second inequality similarly.

𝑝 ≥ 𝑝𝑙 ⇔ 𝑝2(1 + 𝜀)2 ≥ 𝑝2
𝑙
(1 + 𝜀)2 = 𝑝𝑙𝑝𝑙 (1 + 𝜀)2 ≥ 𝑝𝑙𝑝𝑢

⇔
√︁
𝑝2(1 + 𝜀)2 = 𝑝 (1 + 𝜀) ≥

√
𝑝𝑙 × 𝑝𝑢

□

Theorem 7 can be seen in two ways, leading to different algorithmic per-
spectives. First, if the lower- and upper-bound are close enough, with respect
to a pre-defined 𝜀 error factor, the search can be stopped before a timeout.
On the other hand, if the search times out, it is still possible to compute a
minimal 𝜀 required to provide an 𝜀-approximation. Indeed, from the condition
on the bounds in Theorem 7, given a lower bound 𝑝𝑙 and an upper bound 𝑝𝑢 ,
the minimum required 𝜀 is given by the following equation.

𝜀𝑚𝑖𝑛 =

√︂
𝑝𝑢

𝑝𝑙
− 1 (5.8)

From an algorithmic perspective, if an 𝜀 is provided, it is possible to stop
the search when the bounds are close enough. The idea is to approximate
parts of the search tree so that an 𝜀-approximation can be computed at the
root. Such an algorithm is not anytime; the goal is to compute an 𝜀-approximation,
and it returns a solution only when the approximation is computed or it times
out. On the other hand, it is also possible to return an approximation error
and let the user decide if it is good enough. Such an algorithm is, by nature,
anytime; it must frequently return solutions to the user. We provide algo-
rithms for both cases in the rest of this chapter.

5.4 Anytime Bounded Weighted Model Counting

Let us first explore the case in which there is no need to provide an 𝜀. In
such a case, the goal is to design a method that solves the problem iteratively,
tightening the bounds at each iteration. In this work, we propose modifying
the search strategy to achieve such results.

5.4.1 Limited Discrepancy Search

We leverage Limited Discrepancy Search (LDS) [HG95] as a way of comput-
ing successive bounds on the weighted model count. LDS was initially de-
veloped for constraint satisfaction problems (CSP) and naturally extended to
constraint optimisation problems (COP). It is an incremental search; it ex-
plores a progressively larger part of the search space, trying to find good
solutions first. Using such an approach is natural for CSPs and COPs; if the
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algorithm finds a good solution early in the search, it can either return (for
CSPs) or prune large parts of the search space (for CSPs). On the other hand,
it is not straightforward to see that counting problems can benefit from LDS;
indeed, the whole search space must be explored to count the number of so-
lutions. However, Schlandals is well-suited for LDS. To explain that, let us
first formalise how LDS works.

Limited Discrepancy Search has been designed for tree search algorithms
in which the successors of a node are heuristically ordered. That is, given a
node (𝑛) of the search tree with 𝑘 children, there is an order (𝑐1), . . . , (𝑐𝑘 )
such that the node (𝑐𝑖) is assumed to be better (i.e., containing a solution or
the optimal solution) than node (𝑐𝑖+1). Hence, the heuristic can be viewed as
a function ℎ such that ℎ(𝑐𝑖) returns a score for the child (𝑐𝑖). LDS makes the
following two assumptions on the heuristic ℎ.

Assumption 1: The heuristic is correct. It effectively sorts the children ac-
cording to the solutions they contain. It means that the node
(𝑐1) either contains a solution (for CSPs) or the optimal so-
lution (for COPs).

Assumption 2: If the heuristic fails, it is only for a decision point on a branch.
For CSPs, it means that if a contradiction is reached (i.e., a
constraint is unsatisfied), changing a few decisions on that
branch would lead to a solution.

Hence, LDS strongly relies on the quality of the heuristic ℎ: the idea is
to follow the heuristic as much as possible while allowing deviations when it
fails to provide an optimal solution. The decision points at which the heuristic
is not followed (i.e., we branch towards a different child than (𝑐1)) are called
“discrepancies”.

Limited Discrepancy Search is a classical depth-first search in which the
number of discrepancies is limited. It iteratively starts a DFS at the root node,
increasing the number of discrepancies allowed each time until a solution is
found (for CSPs) or the entire search space is explored (for COPs).

Example 27: Limited Discrepancy Search
Let us illustrate how limited discrepancy search works on a small CSP with
four binary variables, 𝑥 , 𝑦, 𝑧, and 𝑡 containing only one solution, which is
𝑥 = ⊥, 𝑦 = ⊤, 𝑧 = ⊥, and 𝑡 = ⊤. The value selection heuristic ℎ always
prefers to assign a variable to ⊤ first and then ⊥. The entire search tree for
such a problem is shown below; the non-solution leaves are marked with
✗ while the solution is marked with ✓.
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𝑥

𝑦

𝑧

𝑡

✗ ✗

𝑡

✗ ✗

𝑧

𝑡

✗ ✗

𝑡

✗ ✗

𝑦

𝑧

𝑡

✗ ✗

𝑡

✓ ✗

𝑧

𝑡

✗ ✗

𝑡

✗ ✗

⊤

⊤

⊤

⊤ ⊥

⊥

⊤ ⊥

⊥

⊤

⊤ ⊥

⊥

⊤ ⊥

⊥

⊤

⊤

⊤ ⊥

⊥

⊤ ⊥

⊥

⊤

⊤ ⊥

⊥

⊤ ⊥

The search space explored after the first iteration of LDS is shown be-
low. During this first iteration, the maximum allowed discrepancy is 0;
hence, only the left-most branch of the search space is explored.

𝑥

𝑦

𝑧

𝑡

✗

⊤

⊤

⊤

⊤

The maximum discrepancy is increased to 1 in the second iteration.
The nodes previously explored are coloured in grey. Since it can deviate
once from the heuristic, this iteration already explores the right part of the
search tree.

𝑥

𝑦

𝑧

𝑡

✗ ✗

𝑡

✗

𝑧

𝑡

✗

𝑦

𝑧

𝑡

✗

⊤

⊤

⊤

⊤ ⊥

⊥

⊤

⊥

⊤

⊤

⊥

⊤

⊤

⊤
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Finally, a solution is found at the third iteration, and the search can be
stopped.

𝑥

𝑦

𝑧

𝑡

✗ ✗

𝑡

✗ ✗

𝑧

𝑡

✗ ✗

𝑡

✗

𝑦

𝑧

𝑡

✗ ✗

𝑡

✓

⊤

⊤

⊤

⊤ ⊥

⊥

⊤ ⊥

⊥

⊤

⊤ ⊥

⊥

⊤

⊥

⊤

⊤

⊤ ⊥

⊥

⊤

5.4.2 LDS for Weighted Counting Problems

LimitedDiscrepancy Search assumes that the value selection heuristic leads to
an optimal solution. There are no solutions to counting problems; the whole
search space must be counted, and it is impossible to reduce the search space.
We argue that, in the specific case of approximate weighted model counting,
and in particular for Schlandals, LDS presents advantages.

Let us assume that LDS is the search strategy for Schlandals. Remember
that Schlandals solves, at the same time, the weighted model counting (i.e.,
computing 𝑝⊤) problem and its dual (i.e., computing 𝑝⊥), allowing to com-
pute bounds at the root node. Let ℎ be a heuristic that orders the values of its
distribution. In the context of LDS, ℎ must favour a good solution; hence, for
the weighted model counting, we assume that ℎ is such that highly-weighted
interpretations are found first. Launching LDS with such a heuristic enables
the quick identification of highly weighted interpretations; hence, the bounds
at the root are expected to converge rapidly towards the true count. A key
aspect is that ℎ does not need to favour models; finding highly-weighted un-
satisfying assignments results in a tighter upper bound.

We designed the most straightforward value heuristic ℎ: given a distribu-
tion P𝑖 = {𝑃1

𝑖 , . . . , 𝑃
𝑚
𝑖 }, we set ℎ(𝑃

𝑗

𝑖
) = 𝜔 (𝑃 𝑗

𝑖
) ∀𝑗 . We order the variables in

decreasing order of weight. The intuition is that, when branching on a vari-
able 𝑃 , both counts (i.e., 𝑝𝑃⊤ and 𝑝𝑃⊥) are multiplied by 𝜔 (𝑃). Hence, selecting
the one with the highest value is the most natural choice.

Algorithm 9 shows the pseudo-code for solving theweightedmodel count-
ing with LDS. For conciseness, we omit the computations of the 𝑝⊤ and 𝑝⊥
counts.

Given a formula 𝐹 and a maximum number of discrepancies 𝑑 , Algo-
rithm 9 follows the same structure as classical DPLL-based model counters.
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Algorithm 9: LDS-based weighted model counting
1 Function LDS-DPLL(𝐹, P, 𝜔,𝐶, 𝑑)

input : 𝐹 a Schlandals formula over distributions P = ∪𝑛𝑖=1P𝑖
input : 𝜔 a weight function
input : 𝐶 a cache of sub-results
input : 𝑑 a maximum discrepancy
output: Possibly partial 𝑝⊤ and 𝑝⊥ count

2 if 𝐹 ∈ 𝐶 as (𝑝⊤, 𝑝⊥, 𝑑 ′) and 𝑑 ′ ≤ 𝑑 then return (𝑝⊤, 𝑝⊥)
3 if P = ∅ then return 1
4 𝑝⊤ ← 0; 𝑝⊥ ← 0
5 𝑖 ← a distribution index such that ∃𝑃 ∈ P𝑖 | 𝑃 is not fixed
6 𝑑𝑖𝑠𝑐𝑟𝑒𝑝𝑎𝑛𝑐𝑦 ← 0
7 foreach 𝑃 ∈ P𝑖 in decreasing order of weight 𝜔 (𝑃) do
8 𝐹 ′ ← Propagate(𝐹, 𝑃,⊤)
9 if 𝐹 ′ = ⊥ then update 𝑝⊥

10 else
11 update 𝑝⊥ from propagation
12 𝐶𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡𝑠 ← all connected components of 𝐹 ′
13 𝑑 ′ ← 𝑑 − 𝑑𝑖𝑠𝑐𝑟𝑒𝑝𝑎𝑛𝑐𝑦
14 foreach 𝐶𝑜𝑚𝑝 ∈ 𝐶𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡𝑠 do
15 P′ ← P reduced to the variables in 𝐶𝑜𝑚𝑝

16 (𝑝𝐶𝑜𝑚𝑝
⊤ , 𝑝

𝐶𝑜𝑚𝑝
⊥ ) ← LDS-DPLL(𝐶𝑜𝑚𝑝, P′, 𝜔,𝐶, 𝑑 ′)

17 end
18 update 𝑝⊤ and 𝑝⊥ from the 𝑝𝐶𝑜𝑚𝑝

⊤ and 𝑝𝐶𝑜𝑚𝑝
⊥ values

19 if 𝑑𝑖𝑠𝑐𝑟𝑒𝑝𝑎𝑛𝑐𝑦 == 𝑑 then break;
20 𝑑𝑖𝑠𝑐𝑟𝑒𝑝𝑎𝑛𝑐𝑦 ← 𝑑𝑖𝑠𝑐𝑟𝑒𝑝𝑎𝑛𝑐𝑦 + 1
21 end
22 end
23 𝐶 [𝐹 ] ← (𝑝⊤, 𝑝⊥, 𝑑)
24 return (𝑝⊤, 𝑝⊥)

One of the differences compared to Schlandals’ classical search is that when
branching on a distribution (line 7), the distribution’s variables are explored
in decreasing order of weight.

When the maximum number of discrepancies is reached (line 19), the
algorithm stops the search and returns the (possibly partial) counts. These
counts are stored in the cache with the maximum number of discrepancies
allowed (line 23). Storing this additional information is necessary; when en-
countering a formula already explored, the algorithm can not directly return
its counts. Indeed, if more discrepancies are allowed (i.e., 𝑑 > 𝑑 ′), then new
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parts of the search space can be explored.
Finally, we include an outer loop that uses the LDS-based counting algo-

rithm, shown in Algorithm 10. While the whole search space has not been
explored (line 4), the algorithm launch an iteration of LDS (line 5), compute
the associate 𝜀min (line 6), and outputs it with the bounds (line 7). This simple
algorithm continues to run until the entire search space has been explored.
However, it is possible to stop it after each iteration of LDS based on user-
defined preferences.

Algorithm 10: LDS-based weighted model counting
1 Function LDS-Schlandals(𝐹, P, 𝜔)

input : 𝐹,P , 𝜔 are the same as Algorithm 9
2 𝐶 ← newCache()
3 𝑚𝑎𝑥𝐷𝑖𝑠𝑐𝑟𝑒𝑝𝑎𝑛𝑐𝑦 ← 0, 𝑝⊤ ← 0;𝑝⊥ ← 0
4 while 𝑝⊤ + 𝑝⊥! = 1 do
5 (𝑝⊤, 𝑝⊥) ← LDS-DPLL(𝐹, P, 𝜔,𝐶,𝑚𝑎𝑥𝐷𝑖𝑠𝑐𝑟𝑒𝑝𝑎𝑛𝑐𝑦)

6 𝜀min ←
√︃

1−𝑝⊥
𝑝⊤
− 1

7 output (𝑝⊤, 1 − 𝑝⊥, 𝜀min)
8 𝑚𝑎𝑥𝐷𝑖𝑠𝑐𝑟𝑒𝑝𝑎𝑛𝑐𝑦 ←𝑚𝑎𝑥𝐷𝑖𝑠𝑐𝑟𝑒𝑝𝑎𝑛𝑐𝑦 + 1
9 end

5.5 Computing 𝜀-approximation in Schlandals

Let us now consider the case inwhich the goal is to provide an 𝜀-approximation
for a known 𝜀. The intuition behind our method is that it is possible to ap-
proximate each sub-problem encountered during the DPLL search in such a
way that it provides an 𝜀-approximation at the root. For convenience, let us
denote by OR nodes in the search tree those corresponding to branching on a
distribution, and by AND nodes those corresponding to a decomposition into
independent components.

Theorem 8. Let 𝐹 be a (possibly residual) Schlandals formula solved at a node

(𝑛) of a Schlandals search tree and (𝑐1), . . . , (𝑐𝑘 ) be its children. Let 𝑝 (𝑐 )⊤ and

𝑝
(𝑐 )
⊥ respectively denote the, possibly partial, sum of weighted satisfying and un-

satisfying interpretations of the child (𝑐). Moreover, let max(𝑐 ) be the weighted
sum of all interpretations at node (𝑐). If it holds, for every child (𝑐), that{

max(𝑐 ) −𝑝 (𝑐 )⊥ ≤ 𝑝
(𝑐 )
⊤ (1 + 𝜀)2 if (𝑛) is a OR node

max(𝑐 ) −𝑝 (𝑐 )⊥ ≤ 𝑝
(𝑐 )
⊤

𝑘
√︁
(1 + 𝜀)2 if (𝑛) is a AND node
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then, the following inequality holds.

max(𝑛) −𝑝 (𝑛)⊥ ≤ 𝑝
(𝑛)
⊤ (1 + 𝜀)2

Theorem 8 uses Theorem 7 to ensure that an 𝜀-approximation can be com-
puted for the formula 𝐹 . Indeed, the left-hand side of the inequalities in The-
orem 8 correspond to an upper-bound on the (sub-)problems and partial sums
for theweightedmodel count (i.e., 𝑝 (𝑛)⊤ ) gives a lower bound on the true count.
Hence, the theorem states that if every child of a node (𝑛) is such that they
can provide an 𝜀-approximation, then so do the bounds computed for (𝑛).

Proof. Let us first define 𝑝 (𝑛)⊤ , 𝑝 (𝑛)⊥ , and max(𝑛) , as computed by Schlandals’
search procedure.

if (𝑛) is a OR-node:

𝑝
(𝑛)
⊤ =

𝑘∑︁
𝑖=1

𝑝
(𝑐𝑖 )
⊤ , 𝑝

(𝑛)
⊥ =

𝑘∑︁
𝑖=1

𝑝
(𝑐𝑖 )
⊥ , max(𝑛) =

𝑘∑︁
𝑖=1

max(𝑐𝑖 )

if (𝑛) is a AND-node:

𝑝
(𝑛)
⊤ =

𝑘∏
𝑖=1

𝑝
(𝑐𝑖 )
⊤ , 𝑝

(𝑛)
⊥ =max(𝑛) −

𝑘∏
𝑖=1
(max(𝑐𝑖 ) −𝑝 (𝑐𝑖 )⊥ ), max(𝑛) =

𝑘∏
𝑖=1

max(𝑐𝑖 )

Note that for ease of notation, we do not include the weights of the vari-
ables that are branched on for a OR-node. The computations presented are
still valid if we assume that the counts returned by the children incorporate
these weights. That is, if the child (𝑐𝑖) is created by setting variable 𝑃𝑖 to true,
then we assume that the weights of all interpretations in (𝑐𝑖) are multiplied
by 𝜔 (𝑃𝑖). Let us now prove the inequalities.

Case 1: (𝑛) is a OR node By hypothesis, we have,max(𝑐𝑖 ) −𝑝 (𝑐𝑖 )⊥ ≤ 𝑝
(𝑐𝑖 )
⊤ (1+

𝜀)2 for each child 𝑐𝑖 (1 ≤ 𝑖 ≤ 𝑘). Since both sides of the inequalities are
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positive, the following inequalities can be derived.

𝑘∑︁
𝑖=1

(
max(𝑐𝑖 ) −𝑝 (𝑐𝑖 )⊥

)
≤

𝑘∑︁
𝑖=1

(
𝑝
(𝑐𝑖 )
⊤ (1 + 𝜀)2

)
⇔

𝑘∑︁
𝑖=1

(
max(𝑐𝑖 ) −𝑝 (𝑐𝑖 )⊥

)
≤ (1 + 𝜀)2

𝑘∑︁
𝑖=1

𝑝
(𝑐𝑖 )
⊤ = (1 + 𝜀)2𝑝 (𝑛)⊤

⇔
𝑘∑︁
𝑖=1

max(𝑐𝑖 ) −
𝑘∑︁
𝑖=1

𝑝
(𝑐𝑖 )
⊥ ≤ (1 + 𝜀)2𝑝 (𝑛)⊤

⇔max(𝑛) −𝑝 (𝑛)⊥ ≤ (1 + 𝜀)2𝑝
(𝑛)
⊤

Case 2: (𝑛) is aAND node In this case, we havemax(𝑐𝑖 ) −𝑝 (𝑐𝑖 )⊥ ≤ 𝑝⊤
𝑘
√︁
(1 + 𝜀)2

for all 𝑐𝑖 (1 ≤ 𝑖 ≤ 𝑘). We prove this case similarly to the precedent:

𝑘∏
𝑖=1

(
max(𝑐𝑖 ) −𝑝 (𝑐𝑖 )⊥

)
≤

𝑘∏
𝑖=1

(
𝑝⊤

𝑘
√︁
(1 + 𝜀)2

)
⇔

𝑘∏
𝑖=1

(
max(𝑐𝑖 ) −𝑝 (𝑐𝑖 )⊥

)
≤

𝑘∏
𝑖=1

𝑝⊤

𝑘∏
𝑖=1

𝑘
√︁
(1 + 𝜀)2 = (1 + 𝜀)2𝑝 (𝑛)⊤

⇔max(𝑛) −max(𝑛) +
𝑘∏
𝑖=1

(
max(𝑐𝑖 ) −𝑝 (𝑐𝑖 )⊥

)
≤ (1 + 𝜀)2𝑝 (𝑛)⊤

⇔max(𝑛) +(−1) ×
(
max(𝑛) −

𝑘∏
𝑖=1

(
max(𝑐𝑖 ) −𝑝 (𝑐𝑖 )⊥

))
≤ (1 + 𝜀)2𝑝 (𝑛)⊤

⇔max(𝑛) −𝑝 (𝑛)⊥ ≤ (1 + 𝜀)2𝑝
(𝑛)
⊤

□

The particularity of this theorem is that the approximation factor must
be tighter when the formula is decomposed into independent components.
Indeed, since the counts are multiplied by each other, in that case, they must
be tighter to produce an 𝜀-approximation at (𝑛). On the other hand, for a
OR node, the weighted sum of the counts is computed; hence, producing an
𝜀-approximation is easier at (𝑛).

Theorem 8 leads to a straightforward approximation algorithm based on
Schlandals’ search, shown in Algorithm 11. We omit again the computations
of the 𝑝⊤ and 𝑝⊥ counts (lines 9, 11, and 20) for ease of notation, but they are
the same as in Algorithm 3 and Algorithm 8.
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Algorithm 11: DPLL-style search providing 𝜀-approximation
1 Function 𝜀-DPLL(𝐹, P, 𝜔,𝐶)

input : 𝐹 a Schlandals formula over distributions P = ∪𝑛𝑖=1P𝑖
input : 𝜔 a weight function
input : 𝐶 a cache of sub-results
input : 𝜀 an approximation factor
output: Partial 𝑝⊤ and 𝑝⊥ such that max𝐹 −𝑝⊥ ≤ 𝑝⊤(1 + 𝜀)2

2 if 𝐹 ∈ 𝐶 as (𝑝⊤, 𝑝⊥, 𝜀′) with 𝜀′ ≤ 𝜀 then return (𝑝⊤, 𝑝⊥)
3 if P = ∅ then return 1
4 𝑝⊤ ← 0; 𝑝⊥ ← 0
5 max𝐹 ←∏𝑛

𝑖=1
∑

𝑃∈P𝑖 𝜔 (𝑃)
6 𝑖 ← a distribution index such that ∃𝑃 ∈ P𝑖 | 𝑃 is not fixed
7 foreach 𝑃 ∈ P𝑖 do
8 𝐹 ′ ← Propagate(𝐹, 𝑃,⊤)
9 if 𝐹 ′ = ⊥ then update 𝑝⊥

10 else
11 update 𝑝⊥ from propagation
12 if max𝐹 −𝑝⊥ ≤ 𝑝⊤ × (1 + 𝜀)2 then break;
13 𝐶𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡𝑠 ← all connected components of 𝐹 ′
14 𝑘 ← |𝐶𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡𝑠 |
15 𝜀′ ← 𝑘

√
1 + 𝜀 − 1

16 foreach 𝐶𝑜𝑚𝑝 ∈ 𝐶𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡𝑠 do
17 P′ ← P reduced to the variables in 𝐶𝑜𝑚𝑝

18 (𝑝𝐶𝑜𝑚𝑝
⊤ , 𝑝

𝐶𝑜𝑚𝑝
⊥ ) ← 𝜀-DPLL(𝐶𝑜𝑚𝑝, P′, 𝜔,𝐶, 𝜀′)

19 end
20 update 𝑝⊤ and 𝑝⊥ from the 𝑝𝐶𝑜𝑚𝑝

⊤ and 𝑝𝐶𝑜𝑚𝑝
⊥ values

21 end
22 if max𝐹 −𝑝⊥ ≤ 𝑝⊤ × (1 + 𝜀)2 then break;
23 end
24 𝐶 [𝐹 ] ← (𝑝⊤, 𝑝⊥, 𝜀)
25 return (𝑝⊤, 𝑝⊥)

The main difference between Algorithm 11 and the classical search algo-
rithm is that the procedure can return before considering all values for the
distribution being branched on. Each time the counts are updated, the al-
gorithm checks if the bounds induced by the counts are close enough (with
respect to a given approximation factor) (lines 12,22); if so, the search stops
and the partial count are returned.

When encountering independent components, the new 𝜀 factor is com-
puted as 𝑘

√
1 + 𝜀 − 1 (line 15), which gives the expected approximation factor
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for each component. Indeed, we have that (1 + 𝑘
√
1 + 𝜀 − 1)2 = 𝑘

√︁
(1 + 𝜀)2.

Finally, the approximation factor used for a formula must also be stored
in the cache, similar to how the discrepancy was stored with the counts. In-
deed, a formula can be encountered multiple times with different approxima-
tion factors, as it decreases when there are independent components. Hence,
the formula must be re-explored if the stored factor (𝜀′) is greater than the
required factor (𝜀).

5.6 Partial Knowledge Compilation

Before analysing the performance of the two algorithms presented above, let
us briefly show how our compilation algorithm can, with minimal changes,
compute partial circuits. As a reminder, Schlandals’ compilation algorithm
works by post-processing the cache of intermediate results. When used as a
compiler, the necessary information to produce an arithmetic circuit is stored
in the cache; that is, pointers to children in the search tree and the propagation
result (i.e., variables assigned to⊤ and unconstrained distributions). Then, the
cache can be parsed, following the links to children, to create an arithmetic
circuit that computes the weighted model count of the boolean formula.

The first key observation is that a similar procedure can be applied to com-
pute arithmetic circuits that calculate the sum of unsatisfying assignments;
the only difference is that variables removed from the distributions must be
stored in the cache. Hence, Schlandals can produce, with a single search, two
ACs that compute a lower and an upper bound on the weighted model count.

The second key observation is that Schlandals’ compilation algorithm still
works when the cache is partially filled (i.e., the search space has not been
fully explored). Partially exploring the search space results in nodes having
links to only a subset of their children. It is still possible to build a partial AC
from this subset, resulting in ACs that compute a partial sum over the model
or unsatisfying assignments. Hence, both approximate algorithms presented
above can be used to produce partial ACs.

Combining limited discrepancy search with partial compilation is partic-
ularly interesting. Let us assume that the goal is to compute two circuits
(one for the lower bound and one for the upper bound) that provide an 𝜀-
approximation of theweightedmodel count. Moreover, the two circuits should
be as small as possible in size. In a NeSy context, smaller circuits result in
faster training loops, which can significantly reduce the learning time. Hence,
this is a bi-objective optimisation problem: finding the pair of circuits whose
size is as small as possible while providing an 𝜀-approximation.

We describe how limited discrepancy search can be used to solve such an
optimisation problem. The first observation is that adding the discrepancy
of each search-tree node in the cache allows compiling circuits representing
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the search space up to a given discrepancy. Moreover, it is straightforward to
compile the circuit of each boundwith a different discrepancy. After each LDS
iteration, it is possible to store the following elements: 1. The discrepancy,
2. The bounds, 3. and the sizes of the circuits if they were compiled after this
iteration. Note that this last element is easily computed using two counters
that are updated when entries are added to the cache.

Then, for two discrepancies 𝑑1 and 𝑑2 (with 𝑑1 not necessarily different
than 𝑑2), it is possible to construct an AC computing the lower bound for
discrepancy𝑑1 and anAC computing an upper bound for discrepancy𝑑2. Such
a combination has a certain size and 𝜀-error factor. Let 𝑆 be the set of such
pairs; then, the Pareto frontier of 𝑆 represents possible solutions to our bi-
objective optimisation problem. Deciding to favour either the circuit size or
the approximation error is a user choice.

This use case highlights the benefits of our simple compilation algorithm.
With minor modifications to the cache structure, which adds negligible over-
head to the compilation runtime, it is possible to produce partial circuits by
running another search scheme.

5.7 Experimental Evaluation

This section evaluates the two approximation algorithms developed in this
chapter. We limit our comparison to Ganak and Toulbar2, as they are the
only solvers that provide methods for computing approximations with rela-
tive errors. Ganak computes (𝜀, 𝛿)-approximations using the ApproxMC al-
gorithms [CMV16; SM19; SGM] and Toulbar2 has a dedicated algorithm
for computing 𝜀-approximations [Vir+16]. For Ganak, we set 𝛿 = 0.8 as
its performance heavily depends on the choice of 𝛿 ; when computing (𝜀, 𝛿)-
approximations with a very small 𝛿 (e.g., 0.01), it can only solve the easiest
instances. Our analysis excludes approximate unweighted model counters. It
is known that weighted model counting can be reduced to unweighted model
counting by adding variables and clauses for the weights [Cha+15]; however,
the overhead of such an approach makes it unusable in practice.

One challenge in evaluating these three solvers is that they efficiently
solve different instances. Hence, an instance considered difficult for Schlandals
might not be for Ganak and vice versa. For this reason, we compare the
three solvers in various settings, including different sub-sets of instances.
We denote by Schlandals-eps the version of Schlandals computing an 𝜀-
approximation (Algorithm 11) and by Schlandals-lds the LDS-based ver-
sion of Schlandals (Algorithm 9). When running Schlandals-lds to com-
pute an 𝜀-approximation, the algorithm runs with increasingly higher dis-
crepancy until the minimum required approximation factor is small enough
(i.e., 𝜀min ≤ 𝜀) All versions of Schlandals (i.e., the classical search, Schlandals-eps,
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Figure 5.1: Proportion of solved instances over time for various approxi-
mation factors for the munin1 Bayesian network. The solid lines represent
each solver’s exact solving (i.e., without approximation), while the dotted
and dashed lines represent the approximations.

and Schlandals-lds) use the same value selection heuristic: when branch-
ing on a distribution, the values are ordered in decreasing order of their weight.

We evaluate three aspects of the approximation algorithms:

1. Does computing approximations allow solving more instances?

2. How precise are the computed approximations?

3. How do Schlandals’ bounds converge?

Performance improvements from approximation First, let’s examine
how the approximation affects performance. In order to take benchmarks that
are difficult for each solver, we use the munin1 network, a sub-network of the
munin network, instead of the bn-learn networks used in the previous chap-
ter. It contains 186 nodes, 273 edges, and more than 15, 000 parameters, mak-
ing it a challenging instance to solve. The queries are not pre-processed to re-
tain only nodes relevant to them, except for Ganak; if no such pre-processing
is done, it cannot solve the instances. However, this does not significantly af-
fect the analysis.

Figure 5.1 shows the proportion of instances created from munin1 solved
over time for various 𝜀 values. The solid lines represent the exact solving
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Figure 5.2: Proportion of solved instances over time for various approxi-
mation factors for grid Bayesian networks. The solid lines represent each
solver’s exact solving, without approximation), while the dotted and dashed
lines represent the approximations. The grids are of size 10 by 10, with 50%
of deterministic nodes for Schlandals; of size 25 by 25, with 70% of determin-
ism; and of size 45 by 45, for Ganak with 70% of determinism.

of the solvers, as evaluated in Chapter 4. It can be seen that Schlandals can
solve half of the instances within the given timeout, while Toulbar2 solves
them all within 300 seconds. Ganak also solves them all, which is expected
since they are pre-processed. However, computing 𝜀-approximations does not
affect the time it needs to solve the instances; it solves the instances the same
with or without approximations.

Let us now analyse how Schlandals-eps and Schlandals-lds ben-
efit from approximations. On the one hand, Schlandals-eps does not
result in more instances being solved, but they are solved faster. On the
other hand, Schlandals-lds solves many more instances than the clas-
sical search. Hence, for this particular data set, Schlandals-eps does not
have much benefit.

It is possible to explain these two behaviours from the structure of the
algorithms. Schlandals-eps is still a classical depth-first search over the
possible assignments; hence, it can still lose time in parts of the search space
with a small probability mass. Additionally, when a formula is decomposed
into independent components, each component must be solved to approx-
imate the overall formula. Such problems do not appear when using LDS;
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using a limited discrepancy at each iteration allows for the search to quickly
diversify, exploring parts of the search space likely to contain interpretations
with a high weight. Moreover, when independent components are encoun-
tered for the first time, they are explored with a discrepancy of 0, leading to
a fast evaluation.

For Toulbar2, the behaviour is unexpected as it solves the instances
slower when approximations are computed. We observed that when com-
puting 𝜀-approximations, the search tree explored by Toulbar2 is generally
larger. It has been observed by Viricel et al. that the upper-bound compu-
tation and leaf-ordering can negatively impact performance. One possible
explanation for this degradation in performances is that when computing ap-
proximations, Toulbar2’s search strategy changes, resulting in larger search
trees.

A similar analysis can be done on the grid Bayesian networks, as shown
in Figure 5.2. In this experiment, we do not use the instances of Chapter 4.
Indeed, the three solvers can solve grids of very different sizes. For example,
Ganak can solve grids of size 40 with 50% of determinism while Schlandals
struggles to solve instances of size 12 with 50% determinism. Hence, we cre-
ated a dataset of 100 queries for each solver so that it cannot solve all of
them exactly. For Ganak, the grids are of size 45 with 70% determinism; for
Toulbar2, the grid is of size 25 with 70% determinism; and for Schlandals,
the grid is of size 10with 50% determinism. Although it results in graphs that
can not be directly compared, it is still possible to analyse the behaviour of
the solvers in these instances. Obviously, such an analysis is biased due to
the selection of parameters; it is possible to select parameters that result in
approximate methods being more efficient. We have selected these param-
eters because they yield results that differ from those for munin1, thereby
highlighting that no algorithm is superior in all cases.

Ganak behaves in the same way as for the munin1 network; it does
not benefit from computing approximations. Interestingly, Schlandals and
Toulbar2 behaviour change on the grid networks. While computing 𝜀-
approximations was detrimental to Toulbar2 performance, it is no longer
the case. In practice, the search space is often reduced in this case, but not sig-
nificantly. On the other hand, Schlandals-lds solves fewer instances than
the classical search. In this case, LDS is ineffective due to the structure of the
search space. As explained previously, the search space is typically deepwhen
solving grid instances, resulting in interpretations with low weight. Hence,
the bounds converge slowly, and the overhead of restarting the search from
the root is not compensated. Schlandals-eps does not suffer from such a
drawback since it applies the same search as Schlandals, there is no overhead,
and both methods solve the same number of instances.

Finally, Figure 5.3 shows the proportion of instances solved over time for
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Figure 5.3: Proportion of solved instances over time for various approxima-
tion factors for reliability estimation queries. Only queries that take at least
one solver more than 120 seconds are considered. The solid lines represent
each solver’s exact solving (i.e., without approximation), while the dotted
and dashed lines represent the approximations.

reliability estimation problems. We used the same datasets; only Ganak is
compared to ourmethods. For these problems, it can be seen thatSchlandals-lds
is the only method that truly benefits computing approximations.

How accurate are the approximations? An 𝜀-approximation is an error-
bounded approximation but can be relatively close to the true weightedmodel
count in practice. Figure 5.4 shows how well each solver approximates the
true weighted model count for Bayesian networks (i.e., munin1 and grid net-
works). For each instance for which the true weighted model count 𝑝 can
be computed, we compute the metric 𝑝

𝑝
where 𝑝 is an 𝜀-approximation. A

value of 1 means that 𝑝 = 𝑝 , a value lower than 1 means that the count is
under-approximated, and a value greater than 1 means that the true count is
over-approximated.

The three solvers have very different behaviours. Ganak mostly returns
the true weighted model count. As it approximates very few instances, it
computes the exact weighted model count most of the time. On the other
hand, Toulbar2, while not solving many more instances, still provides ap-
proximations. Its behaviour can explain this: during its search, when it eval-
uates that a sub-problem does not contain enough probability mass (with re-
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Figure 5.4: Accuracy of the approximations returned by each solver, each
data point represents an instance. For Schlandals and Toulbar2, the geo-
metric mean of the computed bounds is returned. Ganak directly provides
its approximations.

spect to the given 𝜀), it does not explore it and adds its total probability mass
to an upper bound. Hence, even if an instance can be solved exactly, it is
still approximated. Toulbar2 returns a lower and an upper bound on the
true probability; hence, to provide an approximation, we decided to use their
geometric mean as taking one of the two bounds would always under- or
over-approximate the true probability. We also experimented with the arith-
metic mean of the bounds, but the results did not change significantly. Such
an approximation mostly over-approximates the probabilities. Interestingly,
Toulbar2 provides probabilities with stronger guarantees than required. For
example, when computing approximation with 𝜀 = 0.2, all data points are be-
low the 1.1 bar, meaning they are also approximations for 𝜀 = 0.1.

Finally, Schlandals has approximations ranging in the full spectrum of
possibilities for both approximation algorithms. Both Schlandals-eps and
Schlandals-lds have a similar behaviour: as soon as an approximation
can be made, the algorithm stops exploring the (sub-)problem. Hence, the
bounds computed at the root are generally less tight than they could be in the
given time limit.

Bound convergence in Schlandals Finally, let us analyse how Schlandals’
bounds converge towards the true model count. We define two metrics eval-
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Figure 5.5: Bound convergence of the DFS and LDS search of Schlandals on
the munin1 Bayesian network (left) and the grid networks (right). For each
method, the distance of the bounds towards the true count is computed for
each time epoch. Unsatisfiable instances (i.e., a weighted model count of 0)
are excluded from this analysis. The average distance for each instance is
reported.
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uating the distance between each bound and the model count. Let 𝑝 be the
true model count, 𝑝𝑙 be a lower bound on 𝑝 , and 𝑝𝑢 be an upper bound on
𝑝 . Then we define the distance between 𝑝𝑙 and 𝑝 as 1 − 𝑝𝑙

𝑝
, and the distance

between 𝑝𝑢 and 𝑝 as 1− 1−𝑝𝑢
1−𝑝 . The intuition behind these metrics is that when

no information is available (i.e., 𝑝𝑙 = 0 and 𝑝𝑢 = 1.0), they are equal to 1. On
the other hand, when the bounds reach the true count, the distance is 0.

Figure 5.5 shows the average distance of the bounds over time on the
munin1 and grid networks used previously for Schlandals-lds (black) and
the classical depth-first search (green). Since the depth-first search is not any-
time, it was launched with increasingly higher timeouts, and the bounds at
the timeout were recorded. The depth-first search used the same variable
ordering as Schlandals-lds. Moreover, to evaluate the impact of the vari-
able ordering heuristic, we also ran LDS with the variables ordered randomly
(orange). The coloured areas represent the standard deviation from the mean.
The two upper graphs show the convergence of the upper bound towards the
true probability, and the lower graphs show the convergence of the lower
bound.

All methods have, on average, better bounds on the munin1 dataset than
for the grid data set; more instances are solved for this set, resulting in tighter
bounds. For this data set, Schlandals-lds has the best convergence: on av-
erage, the bounds are tighter, faster and with less variability. It can also be ob-
served that the variable ordering is crucial for Schlandals-lds efficiency;
with a random order on the variables, Schlandals-lds performs worse
than the classical depth-first search. Moreover, Schlandals-lds reaches a
plateau very quickly: the lower and upper bounds converge to a small dis-
tance of the true probability before stagnating until a time out. In particular,
the upper bound reaches an average distance 0.02 ± 0.05 after 100 seconds.

On the other hand, the classical depth-first search has, on average, the best
bounds for the grid networks. As explained before, Schlandals-lds does
not perform well in these instances; hence, the overhead of the incremental
search is not compensated by a quick tightening of the bounds. Overall, the
grid network exhibits higher variability due tomany instances not beingwell-
solved, resulting in poor approximations (i.e., lower bounds close to 0 and
upper bounds close to 1). Once again, Schlandals-lds with a random
order is the worst-performing method, with bounds very far away from the
true probability, even after 600 seconds.

5.8 Conclusion

This chapter considered the case of approximate weighted model counting
and, in particular, the computation of 𝜀-approximations. First, we showed
how the distributions can be leveraged to compute an upper bound on the
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count of a (sub-)formula. In addition, Schlandals can, like other weighted
model counters, extract a lower bound from a partial evaluation of its search
space. It is known that 𝜀-approximation also provides such bounds; this work
extends this relationship by showing that an 𝜀-approximation can also be
computed from a lower and an upper bound.

Then, we presented two algorithms to perform approximate weighted
model counting in Schlandals. The first one, Schlandals-lds, is based on a
limited discrepancy search: an incremental exploration of the search space to
find highly weighted interpretations first. It is an anytime method that can be
stopped when an approximation criterion is met, if it times out, or when the
search space is fully explored. An interesting property of Schlandals-lds
is that it does not require a pre-defined 𝜀 value to be used. On the other hand,
the second approximate algorithm, Schlandals-eps, is designed to com-
pute an 𝜀-approximation for a given 𝜀. It approximates each sub-problem so
that the probability computed at the root is a valid 𝜀-approximation.

We evaluated Schlandals-lds and Schlandals-eps against the ap-
proximate algorithms developed in Toulbar2 and Ganak. We showed that
Schlandals-lds is themethod allowing approximating themost instances.
Our experiments demonstrated that our variable ordering heuristic effectively
favours finding highly-weighted interpretations first, resulting in LDS outper-
forming classical depth-first search.

However, for the grid, Bayesian networks, Schlandals-lds does not
work. On such networks, Schlandals search space is deep (e.g., a search tree
with a depth greater than 100), and the overhead of the incremental search
hinders the performance. On the other hand, Schlandals-eps does not suf-
fer from such a problem; it always performs slightly better than Schlandals
classical search. A similar problem has been observed on Toulbar2, for
which the gain of using approximation on our benchmarks is limited. How-
ever, when Toulbar2 does produce an approximation, it is often of better
quality than the ones produced bySchlandals-lds andSchlandals-eps.
Ganak does not seem to benefit from computing approximations: it solves the
instances in the same way regardless of the allowed error factor. Moreover,
even when computing approximations, the munin1 bayesian network must
be pre-processed for Ganak to solve it. Overall, Schlandals-lds provides
the most gain compared to its corresponding exact method, but it still needs
to be improved to handle larger search spaces.



Conclusion 6
This work considered probabilistic inference; more precisely, given amodel of
a joint probability distribution over random variables, the task studied was to
compute the probability of observation of some of them. In the most general
case, this problem is #𝑃-Complete; that is, it requires counting the number of
solutions of a 𝑁𝑃-Complete problem. This work focuses on model counting
algorithms for probabilistic inference. The inference task is first encoded as
a boolean formula with a weighting scheme such that the weighted count of
its satisfying assignments corresponds to the desired probability. This thesis
considers three probabilistic inference tasks: computing the probability of
evidence in Bayesian networks, reliability estimation in probabilistic graphs,
and probabilistic logic programming in ProbLog.

This work investigates how the model counting task can be specialised
for probabilistic inference. We introduced the Schlandals language, a new
language based on propositional logic that incorporates elements specific to
the probabilistic inference task studied. First, probability distributions are not
transformed into clauses; they are first-class citizens. Moreover, a restriction
is imposed on the structure of the boolean formula: only Horn clauses are
allowed. Finally, Schlandals formulas are specifically designed to be solved
using projected weighted model counting. We showed in Chapter 3 that all
three studied problems can be encoded as a Schlandals formulas.

Then, in Chapter 4, we detailed the algorithms at the core of the Schlandals
solver, a solver designed to compute the count of a Schlandals formula. We
demonstrated that a straightforward modification of an exhaustive DPLL-
style search can be employed. Moreover, we developed a new method that
leverages the non-projected variables to simplify the formula. We demon-
strate that this algorithm can also be applied within the DPLL-style search to
reduce the search space.

Our experiment showed that Schlandals is competitive with state-of-the-
art model counters and reasoning systems. On Bayesian networks, Schlandals
is even better than other model counters when the networks are not reduced
in pre-processing since our new algorithm for simplifying Schlandals for-
mulas performs such reduction naturally. When the networks are reduced,
Schlandals still solve most instances, but slower than the other competitors.
On the other hand, Schlandals is the best-performing solver on reliability esti-
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mation problems. Additionally, we implemented an interface in ProbLog that
utilises Schlandals as an inference system; for both Bayesian networks and re-
liability estimation problems, ProbLog solves more instances when coupled
with Schlandals.

Then, we developed algorithms for approximate model counting in Chap-
ter 5. We first demonstrated that thanks to the probability distributions, it is
possible to compute the weighted sum of satisfying and unsatisfying assign-
ments of a Schlandals formula simultaneously. An upper bound can then be
computed from the sum of unsatisfying assignments if the search times out.
Moreover, we prove that a relationship exists between bounds on the count
and the well-known 𝜀-approximations.

We leverage this relationship in two new algorithms for approximateweighted
model counting in Schlandals. The first one, Schlandals-eps, recursively
approximates the sub-problems encountered during the depth-first search
so that the bounds computed at the root node provide an 𝜀-approximation.
The second method, Schlandals-lds, is based on another search strat-
egy: limited discrepancy search. It incrementally explores larger parts of the
search space and tries to find highly weighted interpretations first. By doing
so, Schlandals-lds aims to make the bounds at the root converge faster,
thereby providing a good approximation more quickly. Our experiments con-
firmed this behaviour, Schlandals-lds is able to make bounds converge
faster than Schlandals-eps, resulting in faster 𝜀-approximations.

Schlandals-lds performed overall the best on the studied benchmark.
However, there are certain cases when it decreases the performance of the
classical depth-first search when the overhead of the incremental search be-
comes too high. On the other hand, although Schlandals-eps performs
less well, it always performs at least as well as Schlandals depth-first search.

6.1 Future Research Directions

Finally, we briefly present some possible future work based on Schlandals.
There are two axes developed in this section. First, there is still work that
can be done on Schlandals itself to enhance its capability of solving model
counting problems. Next, we outline possible research directions for NeSy AI
in a more general context.

6.1.1 From Schlandals to Other Model Counters and Vice-versa

One goal for developing Schlandals was to quickly test new ideas for solving
the weighted model counting problems. We demonstrated that utilising dis-
tributions as first-class citizens enables the computation of an upper bound
on the true weighted model count and that limited discrepancy search is an
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effective strategy for quickly obtaining good approximations. These features
can be integrated into other model counters; for example, LDS can be imple-
mented in search-based model counters such as GPMC or Ganak. Integrating
distributions as first-class citizens into other model counters is more chal-
lenging as it changes the basic unit of the boolean formulas (i.e., distributions
instead of variables). One challenge is that most model counters are generic
and solve multiple variants of the counting problem, such as unweighted
and weighted model counting. Probability distributions are not helpful for
unweighted model counting, making their integration into standard model
counters difficult.

On the other hand, many techniques in state-of-the-art model counters
could be implemented in Schlandals. For example, further research is needed
to explore how branching heuristics can be generalised to select distributions
rather than variables. Similarly, various preprocessing techniques have been
proposed in the literature (e.g., vivification [PHS08], gate detection [BW04;
EB05; Ost+02], backbone detection [Mon+99]) and are beneficial for model
counting [LM17b] but are not yet implemented in Schlandals.

6.1.2 Solving More Inference Tasks

The inference tasks considered in this work fall into the sum-product prob-
lems category, i.e., summing the weights of possible worlds. However, many
more inference tasks can be defined on the probabilistic models considered.
For example, a typical query on a Bayesian network (V ,𝚽) is to find the
most likely assignments to a set of node M ⊆ V , given a set of observed
variables E = V \M . This is the Maximum A Posteriori (MAP) problem,
which is known to be 𝑁𝑃-Hard. Another popular example is the Marginal

MAP (MMAP) problem, which combines the MAP problem with the counting
problem presented in this work. Contrary to the MAP problem, the sets M
and E are not a partition of V ; hence, for each possible assignment of the
variables in M , computing its probability requires solving a #𝑃-Hard prob-
lem. These two problems can also be solved by reasoning over a boolean
formula encoding the Bayesian network. An interesting line of work would
be to analyse how Schlandals can be adapted to solve such problems.

Moreover, additional probabilistic models can also be considered. For ex-
ample, factor graphs, a generalisation of Bayesian networks, are a natural
extension of our work. It is known that classical encoding algorithms such as
ENC4 can be used to encode factor graphs. However, Schlandals has a slightly
different structure for its clauses (i.e., the parameter variables are on the left-
hand side of the implications), and encoding a factor graph into a Schlandals
formula is not as direct as with state-of-the-art encodings.

Finally, removing the Horn constraint on the clauses can increase the
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number of problems that can be modelled in Schlandals. Although Schlandals
performance relies heavily on its ability to simplify formulas during propa-
gation, many inference tasks are modelled with non-Horn clauses. For ex-
ample, the ROAD-R challenge is a popular NeSy benchmark for autonomous
driving, where the goal is to detect road events in videos [Sin+22; Giu+23].
This benchmark defines a set of logical constraints that contains distribution
constraints, Horn clauses, and a few non-Horn clauses. Schlandals can not
be applied to this challenge because of these few non-Horn clauses, but the
benefits of Schlandals (e.g., its approximate LDS-based algorithm) extend be-
yond the Horn-structure of its formulas. The impact of allowing non-Horn
clauses in a Schlandals formula can be evaluated in future work. In particular,
we demonstrated that simplifying the formula using non-projected variables
is crucial for Schlandals’ performance; however, this algorithm relies on the
Horn structure of the formula. Hence, new algorithms must be developed to
apply this simplification to general boolean formulas.

6.1.3 Counting Constraint Satisfaction Problems for NeSy Systems

One of the most commonways of encoding logical constraints in the NeSy lit-
erature is propositional logic. The literature contains a variety of knowledge
compilers that can transform a boolean formula into a differentiable form
(e.g., NNF diagrams, arithmetic circuits), allowing NeSy systems to be learned
end-to-end with automatic differentiation tools. Schlandals’ compilation al-
gorithm is based on post-processing the cache, a depth-first search in which
propagation is applied after each decision.

From a compilation point of view, only the propagation result (i.e., which
variables have been assigned) is necessary. Hence, constraints can be en-
coded in other language than CNF formulas. In particular, the Constraint
Programming (CP) paradigm offers a variety of global constraints with dedi-
cated, powerful filtering algorithms (i.e., algorithms that remove values from
variables based on assignments to other variables).

For example, let us consider a NeSy Sudoku verifier. When encoded in
propositional logic, the Sudoku constraints are transformed into pairwise dif-
ference constraints (i.e., ¬𝑋 ∨ ¬𝑌 ). In the CP literature, the allDifferent
constraint encodes Sudoku constraints compactly, stating that a set of 𝑛 vari-
ables must take distinct values. In addition to encoding the set of constraints
compactly, there are filtering algorithms for the allDifferent constraint
that are stronger than boolean unit propagation. Let us consider four vari-
ables, on which the allDifferent constraint is applied, with the following
domains: 𝑋1 ∈ {1, 2, 3, 4}, 𝑋2 ∈ {2, 3}, 𝑋3 ∈ {1, 2, 4}, 𝑋4 ∈ {2, 3}. Any as-
signment on these variables must set 𝑋2 and 𝑋4 to either 2 or 3; hence, 𝑋1
and 𝑋3 can not take these values and can be removed from their domain.
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While an algorithm exists to find such filtering on the allDifferent con-
straint [Rég94], such propagation is impossible when decomposed into binary
constraints.

This small example highlights the reasoning power of global constraints
in CP. Moreover, numerous research studies in the constraint community are
currently focused on compiling constraints as decision diagrams [Ber+16].
Further research could investigate the benefits of incorporating global con-
straints within NeSy systems and how current state-of-the-art algorithms for
decision diagrams can be adapted. Moreover, this would extend the applica-
bility of NeSy systems to more real-world applications that require the mod-
elling of complex and high-level constraints.

6.1.4 Learning NeSy Systems with Approximate Counting

Finally, as highlighted in the introduction to this manuscript, exact probabilis-
tic inference is the primary computational bottleneck of NeSy systems. Ap-
proximate methods can reduce the runtime of the inference task, but they do
so at the cost of not representing all solutions to the logic constraints. These
methods come with various guarantees, and an open question currently be-
ing investigated is whether the learning phase of a NeSy system benefits from
such guarantees [DDN24; Kri+23; MMD21]. In other words, when represent-
ing the set of models of a boolean formula in a partial arithmetic circuit, is it
necessary to have strong guarantees (e.g., 𝜀-approximations) on the probabil-
ity computed by the circuit?

Moreover, the weights are continually updated during the learning, but
the circuits are constructed from the original weights. Hence, a partial circuit
with, for example, 𝜀-approximation at the beginning of the training might
not maintain this guarantee during the training. This also suggests that there
are algorithmic questions about how to integrate partial compilation into the
learning pipeline, allowing for the best representation of the sets of models
of the boolean formula while minimising excessive overhead by avoiding re-
peated recompilation.

Using our LDS-based approximation, we began exploring such questions,
particularly from the symbolic aspect of NeSy systems. For example, we
showed that there is a trade-off between the accuracy of the approximations
and the size of the ACs. Further research is needed to explore the compromise
between these two aspects for NeSy systems.
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